吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (1): 55-59.

• • 上一篇    下一篇

一类Caputo型分数阶微分包含的非局部问题

吴睿1, 高珊珊2, 程毅3   

  1. 1. 长春财经学院 数学教研部, 长春 130122; 2. 辽宁理工学院 信息工程学院, 辽宁 锦州 121000;
    3. 渤海大学 数学科学学院, 辽宁 锦州 121000
  • 收稿日期:2020-05-27 出版日期:2021-01-26 发布日期:2021-01-26

Nonlocal Problems of a Class of Caputo-Type Fractional Differential Inclusions

WU Rui1, GAO Shanshan2, CHENG Yi3   

  1. 1. Department of Mathematics, Changchun University of Finance and Economics, Changchun 130122, China;
    2. Department of Information Engineering, Liaoning Institute of Science and Engineering, Jinzhou 121000, Liaoning Province, China;
    3. College of Mathematical Sciences, Bohai University, Jinzhou 121000, Liaoning Province, China
  • Received:2020-05-27 Online:2021-01-26 Published:2021-01-26
  • Contact: 吴睿 E-mail:wurui0221@sina.com

摘要: 考虑一类具有非线性增长条件的分数阶微分包含的非局部问题, 先利用Leray-Schauder不动点定理验证分数阶非线性微分方程解的存在性与唯一性, 再利用集值不动点理论证明一类分数阶微分包含问题解的存在性.

关键词: 分数阶微积分, 微分包含, 非局部问题, 不动点定理

Abstract: We considered a nonlocal problems of a class of fractional differential inclusions with nonlinear growth conditions. Applying to the Leray-Schauder fixed point theorem, we first verified the existence and uniqueness of solutions for fractional nonlinear differential equations, and then proved the existence of solutions for a class of fractional differential inclusions by using set-valued fixed point theorem.

Key words: fractional calculus, differential inclusion, nonlocal problem, fixed point theorem

中图分类号: 

  • O175.14