吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (2): 221-228.

• • 上一篇    下一篇

广义二次矩阵与其幂等矩阵线性组合幂等性的非平凡解

陈梅香1, 叶铃滢2, 杨忠鹏1   

  1. 1. 莆田学院 数学与金融学院, 福建 莆田 351100; 2. 福建师范大学 数学与信息学院, 福州 350007
  • 收稿日期:2020-08-31 出版日期:2021-03-26 发布日期:2021-03-26
  • 通讯作者: 杨忠鹏 E-mail:yangzhongpeng@126.com

Nontrivial Solutions of Idempotency of Linear Combinations of Generalized Quadratic Matrix and Its Idempotent Matrix

CHEN Meixiang1, YE Lingying2, YANG Zhongpeng1   

  1. 1. School of Mathematics and Finance, Putian University, Putian 351100, Fujian Province, China;
    2. College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350007, China
  • Received:2020-08-31 Online:2021-03-26 Published:2021-03-26

摘要: 首先, 用广义二次矩阵的基本性质, 研究表示为A2=αA+βP的广义二次矩阵A与幂等矩阵P的线性组合ρA+σP为幂等的非平凡解(ρ,σ)的存在性,  结果表明, 当η2=4β+α2≠0时, ρA+σP有且仅有两个非平凡解,A可唯一地表示为这两个非平凡解生成的幂等矩阵的线性组合; 其次, 讨论当η2=4β+α2=0时ρA+σP非平凡解的情况.

关键词: 广义二次矩阵, 幂等矩阵, 幂零矩阵, 线性组合, 非平凡解

Abstract: Firstly, by using the basic properties of generalized quadratic matrices, we studied the existence of the nontrivial solution (ρ,σ) for the linear combination ρA+σP of  generalized quadratic matrix A and an idempotent matrix P expressed as A2=αA+βP. The results show that when η2=4β+α2≠0, ρA+σP has only two nontrivial solutions, and the matrix A can be uniquely expressed as a linear combination of idempotent matrix generated by these two nontrivial solutions. Secondly, we discussed the case for nontrivial solution of ρA+σP when η2=4β+α2=0.

Key words: generalized quadratic matrix, idempotent matrix, nilpotent matrix, linear combination, nontrivial solution

中图分类号: 

  • O151.21