吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (2): 325-332.
刘庆强1, 张福禄1, 张瑶瑶2, 张晨雨3
LIU Qingqiang1, ZHANG Fulu1, ZHANG Yaoyao2, ZHANG Chenyu3
摘要: 为提升目标跟踪的准确性并保证其实时性, 提出一种基于改进孪生全卷积网络的新方法——孪生压缩激励全卷积网络(siamese squeeze and excitation fully convolutional networks, Siam-SEFC). Siam-SEFC通过添加具有少量参数的压缩激励网络结构融合空间通道信息, 为跟踪对象添加空间信息, 并通过调整训练数据尺度进行尺度不定的数据增强, 提取多尺度特征, 有效提升目标跟踪的准确性. 为提升多尺度训练速度, 网络采用单一尺度预训练的权重进行初始化. 与MDNet,SENet,DAT三种算法相比, Siam-SEFC在保证目标跟踪准确性的同时具有实时性; 而与Siamese-FC相比, Siam-SEFC跟踪准确性提升了2.2%, 参数量仅增加1.01%, 且未损失实时性, 验证了改进方案的有效性.
中图分类号: