吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (2): 325-332.

• • 上一篇    下一篇

孪生压缩激励全卷积网络的目标跟踪方法

刘庆强1, 张福禄1, 张瑶瑶2, 张晨雨3   

  1. 1. 东北石油大学 电气信息工程学院, 黑龙江 大庆 163318; 2. 东北石油大学 计算机与信息技术学院, 黑龙江 大庆 163318; 3. 安徽农业大学 经济管理学院, 合肥 230061
  • 收稿日期:2020-04-21 出版日期:2021-03-26 发布日期:2021-03-26
  • 通讯作者: 张福禄 E-mail:heshang_181@163.com

Target Tracking Method Based on Siamese Squeeze and Excitation Fully Convolutional Networks

LIU Qingqiang1, ZHANG Fulu1, ZHANG Yaoyao2, ZHANG Chenyu3   

  1. 1. School of Electrical Engineering and Information, Northeast Petroleum University, Daqing 163318, Heilongjiang Province, China;
    2. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, Heilongjiang Province, China;
    3. College of Economics and Management, Anhui Agricultural University, Hefei 230061, China
  • Received:2020-04-21 Online:2021-03-26 Published:2021-03-26

摘要: 为提升目标跟踪的准确性并保证其实时性, 提出一种基于改进孪生全卷积网络的新方法——孪生压缩激励全卷积网络(siamese squeeze and excitation fully convolutional networks, Siam-SEFC). Siam-SEFC通过添加具有少量参数的压缩激励网络结构融合空间通道信息, 为跟踪对象添加空间信息, 并通过调整训练数据尺度进行尺度不定的数据增强, 提取多尺度特征, 有效提升目标跟踪的准确性. 为提升多尺度训练速度, 网络采用单一尺度预训练的权重进行初始化. 与MDNet,SENet,DAT三种算法相比, Siam-SEFC在保证目标跟踪准确性的同时具有实时性; 而与Siamese-FC相比, Siam-SEFC跟踪准确性提升了2.2%, 参数量仅增加1.01%, 且未损失实时性, 验证了改进方案的有效性.

关键词: 目标跟踪, 孪生全卷积网络, 实时性, 多尺度特征, 数据增强

Abstract: In order to improve the accuracy of the target tracking and achieve real-time tracking, we proposed a new method based on improved siamese fully convolutional networks: siamese squeeze and excitation fully convolutional networks (Siam-SEFC). Siam-SEFC fused spatial channel information by adding squeeze and excitation networks structure with a small number of parameters, added spatial information for the tracking object, and adjusted the training data scale for variable-scale data enhancement to extract multi-scale features, which effectively improved the accuracy of target tracking. Compared with the three algorithms of MDNet, SENet and DAT, Siam-SEFC has real-time performance while ensuring the accuracy of target tracking. Compared with Siamese-FC, the tracking accuracy of Siam-SEFC is improved by 2.2%, the number of parameters is only increased by 1.01%, and there is no loss of real-time performance, which verifies the effectiveness of the improved scheme.

Key words: target tracking, siamese fully convolutional networks, real-time, multi-scale feature, data enhancement

中图分类号: 

  • TP391