吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (3): 577-586.

• • 上一篇    下一篇

可控多重纹理扩展合成与迁移

李二强, 陈凯健, 周漾   

  1. 深圳大学 计算机与软件学院, 广东 深圳 518060
  • 收稿日期:2020-09-02 出版日期:2021-05-26 发布日期:2021-05-23
  • 通讯作者: 周漾 E-mail:zhouyangvcc@szu.edu.cn

Controllable Multi-texture Extended Synthesis and Transfer

LI Erqiang, CHEN Kaijian, ZHOU Yang   

  1. College of Computer Science & Software Engineering, Shenzhen University, Shenzhen 518060, Guangdong Province, China
  • Received:2020-09-02 Online:2021-05-26 Published:2021-05-23

摘要: 针对当前单一纹理扩展模型应用于多重纹理扩展存在模式崩溃及用户无法控制输出的纹理模式或风格等问题, 提出一种新的适用于多重纹理扩展合成与迁移的网络. 首先, 通过在生成对抗网络判别训练中, 增加分类训练, 使判别器在区分生成数据和真实数据的同时, 还能进一步正确识别输入纹理来自哪一张训练图像, 从而改善模式崩溃问题. 其次, 为达到纹理迁移中用户对纹理模式的控制, 将生成器修改为双流数据输入, 其中一流提供结构引导特征, 另一流提供纹理模式特征, 融合两种特征后解码生成最终的纹理图像. 实验结果表明, 该多重纹理扩展模型不仅用一个网络就能正确学习到多张纹理图像的纹理模式, 且训练好的模型还具有更好的、 可控的纹理迁移功能.

关键词: 纹理合成, 控制合成, 纹理迁移, 生成对抗网络

Abstract: Aiming at the problems  of mode collapse in the application of single texture expansion model to multiple texture expansion, and the user could not control the output texture mode and style, we proposed a novel network  for controllable multi-texture extended synthesis  and transfer. Firstly, by adding  classification training in the discrimination  training of generative adversarial network (GAN),  the discriminator could distinguish the generated data from the real data, and could further correctly identify the input texture came from which training image, so as to improve the problem of  mode collapse. Secondly, in order to achieve the user’s control of texture mode in texture transfer, we modified the generator to a two-stream data input, in which one stream provided structure-guiding features, and the other one provided texture mode features. The final texture image was generated by decoding after  fusing  the two features. The experimental results show   that the proposed model can not only correctly  learn the  texture modes of multi-texture images with one network,  but also has better and  controllable texture transfer function.

Key words: texture synthesis, control synthesis, texture transfer, generative adversarial network (GAN)

中图分类号: 

  • TP391.41