吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (6): 1400-1404.

• • 上一篇    下一篇

Heisenberg群中乘积曲面平均曲率流的孤子解

于延华, 封迪   

  1. 东北大学 理学院, 沈阳 110819
  • 收稿日期:2021-01-18 出版日期:2021-11-26 发布日期:2021-11-26
  • 通讯作者: 于延华 E-mail:yyh_start@126.com

Soliton Solution of MCF of Factorable Surfaces in Heisenberg Group

YU Yanhua, FENG Di   

  1. School of Sciences, Northeastern University, Shenyang 110819, China
  • Received:2021-01-18 Online:2021-11-26 Published:2021-11-26

摘要: 首先, 将Heisenberg群中对应的无穷小生成元作用在乘积曲面上, 得到4种单参数曲面族; 其次, 用分析的方法建立3种非平凡曲面族的平均曲率流方程, 得到了平均曲率流的存在时间以及两类曲面族极小平均曲率流的孤子解是马鞍面的结论.

关键词: Heisenberg群, 平均曲率流, 李代数, 乘积曲面, 孤子解

Abstract: Firstly, by applying the corresponding infinitesimal generators of Heisenberg group on the factorable surfaces, we obtained four kinds of one-parameter surface families. Secondly, by using the analytical method, we established the mean curvature flow (MCF) equations of three nontrivial surface families, and obtained the conclusion that the existence time of the MCF and the soliton solution of the minimal MCF of two kinds of the surface families were saddle surfaces.

Key words:  , Heisenberg group, mean curvature flow (MCF), Lie algebra, factorable surface, soliton solution

中图分类号: 

  • O186