吉林大学学报(理学版) ›› 2022, Vol. 60 ›› Issue (4): 784-792.

• • 上一篇    下一篇

具有细胞内时滞的耦合传染病模型

王颖, 王灵芝   

  1. 陕西师范大学 数学与统计学院, 西安 710119
  • 收稿日期:2021-09-26 出版日期:2022-07-26 发布日期:2022-07-26
  • 通讯作者: 王颖 E-mail:17835061672@163.com

Coupled Infectious Disease Model with Intracellular Time Delay

WANG Ying, WANG Lingzhi   

  1. School of Mathematics and Statistics, Shaanxi Normal University, Xi’an 710119, China
  • Received:2021-09-26 Online:2022-07-26 Published:2022-07-26

摘要: 考虑一类具有Logistic增长的时滞耦合模型. 首先, 利用特征方程和Lyapunov-LaSalle不变性原理, 证明当R0≤1时, 无感染平衡点的全局渐近稳定性; 当R0>1时, 病毒感染平衡点Hopf分岔的存在性. 其次, 得到了Logistic增长与时滞会影响系统稳定性的结果. 最后通过数值模拟验证理论结果的正确性.

关键词: 时滞, 稳定性, Lyapunov-LaSalle不变性原理, Hopf分岔

Abstract: We considered a class of time delay coupled models with logistic growth. Firstly, by  using the characteristic equation and Lyapunov-LaSalle invariance principle, we proved the global asymptotic stability of the infection free equilibrium when R0≤1 and the existence of Hopf bifurcation of virus infection equilibrium when R0>1. Secondly, we obtained the results that the logistic growth and time delay affect the stability of the system. Finally, the correctness of the theoretical results was verified by numerical simulations.

Key words: time delay, stability, Lyapunov-LaSalle invariance principle, Hopf bifurcation

中图分类号: 

  • O175