吉林大学学报(理学版) ›› 2022, Vol. 60 ›› Issue (5): 1023-1035.

• • 上一篇    下一篇

黏性血管生成模型解的全局存在性和大时间行为

伍小莉, 刘青青   

  1. 华南理工大学 数学学院, 广州 510641
  • 收稿日期:2021-11-29 出版日期:2022-09-26 发布日期:2022-09-26
  • 通讯作者: 刘青青 E-mail:maqqliu@scut.edu.cn

Global Existence and Large-Time Behavior of Solutions for Viscous Vasculogenesis Model

WU Xiaoli, LIU Qingqing   

  1. School of Mathematics, South China University of Technology, Guangzhou 510641, China
  • Received:2021-11-29 Online:2022-09-26 Published:2022-09-26

摘要: 用时间加权能量方法讨论一类双曲-抛物耦合血管生成模型Cauchy问题常平衡态附近解的全局存在性及渐近行为问题. 结果表明, 当压力P和初始密度在无穷远处的状态ρ满足bP′(ρ)-aμρ>0时, 密度、 速度和化学引诱剂浓度在L2范数意义下均以(1+t)-3/4的衰减率收敛于常平衡态.

关键词: 血管生成模型, 大时间行为, 能量估计, 衰减估计

Abstract: By using the time-weighted energy method, we discussed  the global existence and the asymptotic behavior of solutions near the constant equilibrium state of  the Cauchy problem on a hyperbolic-parabolic model for vasculogenesis. The results show  that the density, the velocity and the chemical attractant concentration converge to the constant equilibrium state with the decay rate (1+t)-3/4 in the sense of L2 norm when  the pressure P and the far field state ρ of initial density satisfy that bP′(ρ)-aμρ>0.

Key words: vasculogenesis model, large-time behavior, energy estimate, decay estimate

中图分类号: 

  •