吉林大学学报(理学版) ›› 2022, Vol. 60 ›› Issue (5): 1036-1042.

• • 上一篇    下一篇

一类二阶积-微分方程边值问题解的存在性与唯一性

王婷婷, 李永祥   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2021-12-10 出版日期:2022-09-26 发布日期:2022-09-26
  • 通讯作者: 李永祥 E-mail:liyx@nwnu.edu.cn

Existence and Uniqueness of Solutions for  Boundary Value Problem of a Class of Second-Order Integro-Differential Equations

WANG Tingting, LI Yongxiang   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2021-12-10 Online:2022-09-26 Published:2022-09-26

摘要: 用Leray-Schauder不动点定理, 讨论二阶非线性积-微分方程边值问题解的存在性与唯一性, 其中f: [0,1]×R2→R连续, S为Fredholm型积分算子. 在非线性项f(t,x,y)满足适当的不等式条件下, 获得了该问题解的存在性与唯一性, 并把所得结果应用于弯曲弹性梁方程.

关键词: 积分-微分方程, 边值问题, 存在性与唯一性, 不动点定理, 弹性梁方程

Abstract: By using Leray-Schauder fixed-point theorem, we discuss the existence and uniqueness of solutions for the boundary value problems of nonlinear second-order integro-differential equation, where f: [0,1]×R2→R is continuous, S is a Fredholm type integral operator. Under proper inequality conditions of the nonlinear term f(t,x,y), the existence and uniqueness of solutions of the problem are obtained, and the results are applied to bending elastic beam equation.

Key words: integro-differential equation, boundary value problem, existence and uniqueness, fixed-point theorem, elastic beam equation

中图分类号: 

  • O175.8