吉林大学学报(理学版) ›› 2022, Vol. 60 ›› Issue (5): 1057-1063.

• • 上一篇    下一篇

一阶非线性边值问题正解的存在性和多解性

雷想兵   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2021-12-17 出版日期:2022-09-26 发布日期:2022-09-26
  • 通讯作者: 雷想兵 E-mail:xlei_nwnu@163.com

Existence and Multiplicity of Positive Solutions of First-Order Nonlinear Boundary Value Problems

LEI Xiangbing   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2021-12-17 Online:2022-09-26 Published:2022-09-26

摘要: 用上下解方法和拓扑度理论, 考虑一类一阶非线性边值问题正解的存在性及多解性. 结果表明: 存在一个正数b*, 使得当0<b<b*时, 该问题至少有两个正解; 当b=b*时, 该问题恰有一个正解; 当b>b*时, 该问题没有正解. 其中b是一个正参数, a∈C([0,1],[0,∞)), 且在[0,1]的任意子区间上不恒为0,  f∈C([0,+∞),[0,+∞)).

关键词: 正解, 多解性, 上下解方法, 拓扑度

Abstract: By using the method of upper and lower solution and topological degree theory, the author considered the existence and multiplicity of positive solutions of a class of first-order nonlinear boundary value problems. The results show that  there is  a positive number b*, so that there are  at least two positive solutions to the problem when  0<b<b*, there is exactly one positive solution to the problem when b=b*, there is no positive solution to the problem when b>b*, where b is a positive parameter, a∈C([0,1],[0,∞)) and is not always 0 on any subinterval of [0,1], f∈C([0,+∞),[0,+∞)).

Key words:  , positive solution, multiplicity, method of upper and lower solution, topological degree

中图分类号: 

  •