吉林大学学报(理学版) ›› 2022, Vol. 60 ›› Issue (6): 1273-1279.

• • 上一篇    下一篇

 一类非线性三阶三点边值问题正解的全局结构

张瑞燕   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2022-02-28 出版日期:2022-11-26 发布日期:2022-11-26
  • 通讯作者: 张瑞燕 E-mail:zry1753574260@163.com

Global Structure of Positive Solutions for a Class of Nonlinear Third-Order Three-Point Boundary Value Problems

ZHANG Ruiyan   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2022-02-28 Online:2022-11-26 Published:2022-11-26

摘要: 用Krein-Rutman定理和Dancer全局分歧理论研究非线性三阶三点边值问题正解的全局结构, 其中r>0是一个参数, 0<η<1, α,β>0, 且非线性项f∈C([0,1]×[0,∞),[0,∞))在0处和∞处均满足渐近线性增长条件.

关键词: 多点边值问题, 正解, 全局结构, 分歧定理

Abstract: By using the Krein-Rutman theorem and Dancer global bifurcation theory, the author studies the global structure of positive solutions for nonlinear third-order three-point boundary value problem, where r>0 is a parameter, 0<η<1, α,β>0, and the nonlinear term f∈C([0,1]×[0,∞),[0,∞)) satisfies asymptotic linear growth condition at 0 and ∞.

Key words: multipoint boundary value problem, positive solution, global structure, bifurcation theorem

中图分类号: 

  • O175.8