吉林大学学报(理学版) ›› 2022, Vol. 60 ›› Issue (6): 1383-1390.

• • 上一篇    下一篇

融合注意力机制和多尺度特征的图像语义分割

姚庆安, 张鑫, 刘力鸣, 冯云丛, 金镇君   

  1. 长春工业大学 计算机科学与工程学院, 长春 130012
  • 收稿日期:2021-10-28 出版日期:2022-11-26 发布日期:2022-11-26
  • 通讯作者: 冯云丛 E-mail:fengyuncong2006@126.com

Image Semantic Segmentation Based on Fusing Attention Mechanism and Multi-scale Features

YAO Qing’an, ZHANG Xin, LIU Liming, FENG Yuncong, JIN Zhenjun   

  1. School of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China
  • Received:2021-10-28 Online:2022-11-26 Published:2022-11-26

摘要: 针对图像语义分割中多尺度类别下目标分割率低、 图像上下文特征信息关联性较差的问题, 提出一种融合注意力机制和多尺度特征的图像语义分割模型. 该模型用改进的带孔空间金字塔池化增加多尺度目标的分割, 用注意力细化模块捕获上下文信息以启发特征学习, 并加入基于注意力机制的特征融合有针对性地监督重要通道特征的学习, 引导高、 低阶特征融合, 以提高模型的泛化能力. 通过在数据集Cityscapes上的仿真实验结果表明, 该模型的平均交并比相比DeepLab v3+提升了1.14%, 证明了该模型具有较好的鲁棒性.

关键词: 多尺度特征, 特征融合, 注意力机制, 语义分割

Abstract: Aiming at the problems  of low target segmentation rate and feeble correlation of image context feature information under multi-scale categories in image semantic segmentation, we proposed an image semantic segmentation model that fused attention mechanism and multi-scale features. The model used the improved  atrous spatial pyramid pooling to increase the segmentation of multi-scale targets, used the attention refinement module to capture context information to guide feature learning, and added feature fusion  based on attention mechanism to  supervise the learning of important channel features, guide the fusion of high-order and low-order features, so as to improve  the generalization capability of the model. The simulation results on the Cityscapes dataset show that the mean intersection over union of the model is 1.14% higher than that of DeepLab v3+, which proves that the model has good robustness.

Key words: multi-scale feature, feature fusion, attention mechanism, semantic segmentation

中图分类号: 

  • TP391