吉林大学学报(理学版) ›› 2022, Vol. 60 ›› Issue (6): 1416-1422.

• • 上一篇    下一篇

基于非负矩阵分解的修正模糊聚类算法

李向利, 范学珍, 逯喜燕   

  1. 桂林电子科技大学 数学与计算科学学院, 广西 桂林 541004
  • 收稿日期:2021-11-16 出版日期:2022-11-26 发布日期:2022-11-26
  • 通讯作者: 李向利 E-mail:lixiangli@guet.edu.cn

Modified Fuzzy Clustering Algorithm Based on Non-negative Matrix Factorization

LI Xiangli, FAN Xuezhen, LU Xiyan   

  1. School of Mathematics & Computing Science, Guilin University of Electronic Techology, Guilin 541004, Guangxi Zhuang Autonomous Region, China
  • Received:2021-11-16 Online:2022-11-26 Published:2022-11-26

摘要: 针对传统模糊C-均值(FCM)算法在处理复杂结构的高维数据集时产生大规模计算量导致聚类效果下降的问题, 提出一种基于非负矩阵分解的修正模糊聚类算法. 首先, 该算法提出了新的目标函数, 采用交替迭代的方式求解该目标函数; 其次, 在迭代过程中利用三角不等式过滤出满足不等式条件的样本, 同时采用新的隶属度更新公式, 减少计算量, 提高聚类性能; 最后, 在数据集UCI和图像数据集上进行实验, 并与其他经典的FCM算法进行对比. 实验结果表明, 该算法提高了聚类效果.

关键词: 模糊C-均值, 聚类, 非负矩阵分解, 交替迭代, 三角不等式

Abstract: Aiming at  the problem that the traditional fuzzy C-means (FCM) algorithm  produced a large amount of computation  when dealing with high-dimensional data sets with complex structures, which led to the decline of clustering effect, we proposed a modified fuzzy clustering algorithm based on non-negative matrix factorization. Firstly, the algorithm proposed a new objective function, which was solved by alternating iterations. Secondly, in the iterative process, triangular inequalities were used to filter out samples that met the inequality conditions, and at the same time,  a new membership updating formula was used to reduce the amount of calculation and  improve the clustering performance. Finally,  experiments were carried ou on the UCI dataset and image dataset, and compared with other classical FCM algorithms. The experimental results show that the algorithm  improves the clustering effect.

Key words: fuzzy C-means, clustering, non-negative matrix factorization, alternate iteration, triangular inequality

中图分类号: 

  • TP391.1