吉林大学学报(理学版) ›› 2022, Vol. 60 ›› Issue (6): 1430-1438.

• • 上一篇    下一篇

双层系统内Jeffreys流体的Rayleigh-Marangoni对流不稳定性分析

栾致漫   

  1. 南京航空航天大学 数学系, 南京 210016; 南京航空航天大学 飞行器数学建模与高性能计算工业和信息化部重点实验室, 南京 210016
  • 收稿日期:2022-04-25 出版日期:2022-11-26 发布日期:2022-11-26
  • 通讯作者: 栾致漫 E-mail:zmluan@nuaa.edu.cn

Rayleigh-Marangoni Convective Instability Analysis of Jeffreys Fluids in Two Layer System

LUAN Zhiman   

  1. Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2022-04-25 Online:2022-11-26 Published:2022-11-26

摘要: 研究流体-多孔介质双层系统中非牛顿流体的Rayleigh-Marangoni对流不稳定性问题. 采用线性化稳定性分析和Chebyshev tau-QZ算法获得其数值结果, 得到临界Rayleigh数和临界Marangoni数中性曲线, 分析不同Marangoni数的临界Rayleigh数这一耦合模式的不稳定性变化趋势, 并讨论振荡对流下Rayleigh对流和Marangoni对流的不稳定性问题. 结果表明: 当增加应力松弛时间时, 振荡对流下Rayleigh对流和Marangoni对流变得更不稳定, 当增加应变弛豫时间时, 两类对流的不稳定性有相反的效果; 当上表面的导热性即相应的Biot数增加时, 这两类对流变得更稳定, 当改变厚度比时,Rayleigh对流不稳定性模态随Biot数的增加发生转变; 得到给定厚度比的Rayleigh-Marangoni对流的耦合不稳定性模式.

关键词: 非牛顿流体, 流动不稳定性, Rayleigh-Marangoni对流, Chebyshev tau-QZ算法

Abstract: The Rayleigh-Marangoni convective instability of a non-Newtonian fluid in a fluid-porous medium two-layer system was studied. The linear stability analysis and Chebyshev tau-QZ algorithm were used to obtain the numerical results, and the neutral curves of the critical Rayleigh number and the critical Marangoni number were obtained. The instability variation trend of the coupling modes of the critical Rayleigh number for different Marangoni numbers was analyzed, and the instability of the Rayleigh convection and Marangoni convection under the oscillatory convection was discussed. The results show that the Rayleigh convection and the Marangoni convection under the oscillatory convection become more unstable when the stress relaxation time increases, the instability of the two types of convection has the opposite effects when the strain retardation time increases. The two types of convections become more stable when the thermal conductivity of the upper surface (the corresponding Biot number) increases, and the Rayleigh convection instability mode converts with the increase of Biot number when the depth ratio changes. The coupling instability mode of the Rayleigh-Marangoni convection for a given depth ratio is obtained.

Key words: non-Newtonian fluid, hydrodynamic instability, Rayleigh-Marangoni convection, Chebyshev tau-QZ algorithm

中图分类号: 

  • O41