吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (1): 127-135.
李晓峰1, 任杰2, 李东3
LI Xiaofeng1, REN Jie2, LI Dong3
摘要: 针对传统移动机器人视觉图像分级匹配算法只能完成粗匹配, 导致最终匹配精度较低、 匹配时间较长等问题, 提出一种基于深度强化学习的移动机器人视觉图像分级匹配算法. 首先, 利用深度强化学习网络结构中的策略网络和价值网络, 共同指导浮动图像按正确方向移至参考图像; 其次, 在粗匹配过程中通过设计奖赏函数, 实现颜色特征粗匹配; 最后, 在粗匹配基础上, 利用改进尺度不变特征变换算法提取待匹配的图像局部特征, 按相似度进行移动机器人视觉图像分级匹配. 实验结果表明, 该算法可有效实现图像的粗匹配与精匹配, 在不同视角与尺度情况下特征检测的稳定性均较高, 匹配精度高、 时间短, 匹配后的图像质量较好, 提高了移动机器人的实际应用效果.
中图分类号: