吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (2): 259-264.

• • 上一篇    下一篇

反应扩散Schnakenberg系统周期解的图灵不稳定性

项楠1,2,3, 林洪燕2, 万阿英2   

  1. 1. 哈尔滨工程大学 智能科学与工程学院, 哈尔滨 150001; 2. 呼伦贝尔学院 数学与统计学院, 内蒙古 呼伦贝尔 021008;
    3. 哈尔滨工程大学 数学科学学院, 哈尔滨 150001
  • 收稿日期:2022-05-11 出版日期:2023-03-26 发布日期:2023-03-26
  • 通讯作者: 万阿英 E-mail:41177650@qq.com

Turing Instability of Periodic Solutions for Reaction-Diffusion Schnakenberg System

XIANG Nan1,2,3, LIN Hongyan2, WAN Aying2   

  1. 1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China;
    2. School of Mathematics and Statistics, Hulunbuir University, Hulunbuir 021008, Inner Mongolia Autonomous Region, China;
    3. College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China
  • Received:2022-05-11 Online:2023-03-26 Published:2023-03-26

摘要: 针对生化反应中的周期振荡现象, 讨论一类具有齐次Neumann边界条件的Schnakenberg模型. 利用Hopf分支理论、 中心流形理论、 规范型方法以及扰动理论等方法, 给出反应扩散Schnakenberg系统的Hopf分支周期解的存在性、 稳定性以及图灵不稳定性.

关键词: Schnakenberg模型, 空间齐次周期解, Hopf分支, 图灵不稳定性

Abstract: We discussed a class of Schnakenberg models with homogeneous Neumann boundary conditions in view of the periodic oscillation phenomenon in biochemical reactions. By using the  methods of Hopf bifurcating theory, center manifold theory, normal form method and perturbation theory, we gave  the existence, stability and Turing instability of the Hopf bifurcating periodic solutions of the reaction-diffusion Schnakenberg system.

Key words: Schnakenberg model, spatially homogeneous periodic solution, Hopf bifurcation, Turing instability

中图分类号: 

  • O193