吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (2): 265-274.

• • 上一篇    下一篇

连续型向上敲出巴黎期权定价隐式差分格式及其稳定性和收敛性分析

丰月姣1, 刘宝亮1, 张秀珍1,2   

  1. 1. 山西大同大学 数学与统计学院, 山西 大同 037009; 2. 华东师范大学 统计学院, 上海 200241
  • 收稿日期:2022-06-27 出版日期:2023-03-26 发布日期:2023-03-26
  • 通讯作者: 张秀珍 E-mail:zhangxiuzhen132@163.com

Implicit Difference Scheme and Its Stability and Convergence Analysis for Continuous Up-and-Out Paris Option Pricing

FENG Yuejiao1, LIU Baoliang1, ZHANG Xiuzhen1,2   

  1. 1. School of Mathematics and Statistics, Shanxi Datong University, Datong 037009, Shanxi Province, China;
    2. School of Statistics, East China Normal University, Shanghai 200241, China
  • Received:2022-06-27 Online:2023-03-26 Published:2023-03-26

摘要: 考虑连续型向上敲出巴黎期权定价问题. 首先, 针对该类型巴黎期权, 给出一个时间1阶、 空间2阶精度的隐式差分格式; 其次, 采用不等式放大方法和Fourier展开方法分别讨论差分格式的稳定性、 可解性和收敛性; 最后, 利用差分格式分析连续型向上敲出巴黎期权的数值定价结果.

关键词: 连续型向上敲出巴黎期权, 数值模拟, 稳定性, 收敛性, 可解性

Abstract: We considered the continuous up-and-out Paris option pricing problem. Firstly, an implicit difference scheme with the first order in time and the second order in space was given for this type of Paris option. Secondly, the inequality amplification method and Fourier expansion method were used to discuss the stability, solvability and convergence of the difference scheme, respectively. Finally, the numerical pricing results of continuous up-and-out Paris options were analyzed by using the difference scheme.

Key words: continuous up-and-out Paris option, numerical simulation, stability, convergence, solvability

中图分类号: 

  • O211.64