吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (2): 325-330.

• • 上一篇    下一篇

基于BERT-GCN的因果关系抽取

李岳泽1, 左祥麟1, 左万利1,2, 梁世宁1, 张一嘉3, 朱媛3   

  1. 1. 吉林大学 计算机科学与技术学院, 长春 130012;
    2. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012; 3. 吉林大学 软件学院, 长春 130012
  • 收稿日期:2022-01-07 出版日期:2023-03-26 发布日期:2023-03-26
  • 通讯作者: 左万利 E-mail:zuowl@mails.jlu.edu.cn

Causality Extraction Based on BERT-GCN

LI Yueze1, ZUO Xianglin1, ZUO Wanli1,2, LIANG Shining1, ZHANG Yijia3, ZHU Yuan3   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2. Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China;
    3. College of Software, Jilin University, Changchun 130012, China
  • Received:2022-01-07 Online:2023-03-26 Published:2023-03-26

摘要: 针对自然语言处理中传统因果关系抽取主要用基于模式匹配的方法或机器学习算法进行抽取, 结果准确率较低, 且只能抽取带有因果提示词的显性因果关系问题, 提出一种使用大规模的预训练模型结合图卷积神经网络的算法BERT-GCN. 首先, 使用BERT(bidirectional encoder representation from transformers)对语料进行编码, 生成词向量; 然后, 将生成的词向量放入图卷积神经网络中进行训练; 最后, 放入Softmax层中完成对因果关系的抽取. 实验结果表明, 该模型在数据集SEDR-CE上获得了较好的结果, 且针对隐式的因果关系效果也较好.

关键词: 自然语言处理, 因果关系抽取, 图卷积神经网络, BERT模型

Abstract: Aiming at the problem that the traditional causality extraction in natural language processing was mainly based  on  pattern matching methods
 or machine learning algorithms, and accuracy of the results was low, and only explicit causality with causal cue words could be extracted, we proposed an algorithm BERT-GCN using large-scale pretraining model combined with graph convolutional neural network. Firstly,  we used BERT (bidirectional encoder representation from transformers) to encode the corpus and generate word vectors. Secondly,  we put the generated word vectors into the graph convolutional neural network for training. Finally, we put them into the Softmax layer to complete the extraction of causality. The experimental results show that  the model obtains good results on the SEDR-CE dataset, and the effect of implicit causality is also good.

Key words: natural language processing, causality extraction, graph convolutional neural network (GCN), bidirectional encoder representation from transformers model

中图分类号: 

  • TP391