吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (4): 761-771.

• • 上一篇    下一篇

无穷区间上分数阶微分方程积分边值问题

李悦, 刘锡平   

  1. 上海理工大学 理学院, 上海 200093
  • 收稿日期:2022-11-03 出版日期:2023-07-26 发布日期:2023-07-26
  • 通讯作者: 刘锡平 E-mail:xipingliu@usst.edu.cn

Integral Boundary Value Problems of Fractional Differential Equations on Infinite Interval

LI Yue, LIU Xiping   

  1. College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2022-11-03 Online:2023-07-26 Published:2023-07-26

摘要: 考虑一类具有多个分数阶导数项的Riemann-Liouville型分数阶微分方程在无穷区间上的积分边值问题. 通过构造新的Banach空间, 利用非线性分析理论, 在非线性项满足L1-Carathéodory条件的情况下, 得到了边值问题正解存在及唯一的多个结论, 并给出实例说明所得结果的适用性和通用性.

关键词: 分数阶微分方程, 无穷区间, 积分边值问题, L1-Carathéodory条件, 不动点定理

Abstract: We considered  integral boundary value problem of a class of Riemann-Liouville fractional differential equations with multiple fractional derivative terms on infinite intervals. By constructing a new Banach space and using the nonlinear analysis theory, and under the condition that the nonlinear term satisfied the L1-Carathéodory conditions, some conclusions  for existence and uniqueness of positive solutions to boundary value problems were obtained, and an example was used to illustrate the applicability and universality of the obtained results.

Key words: fractional differential equation, infinite interval, integral boundary value problem,  , L1-Carathéodory condition, fixed point theorem

中图分类号: 

  • O175.8