吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (4): 796-800.

• • 上一篇    下一篇

具有电磁场和临界Hardy-Littlewood-Sobolev项的非线性Kirchhoff方程的多解性

赵敏, 张德利   

  1. 长春师范大学 数学学院, 长春 130032
  • 收稿日期:2022-09-28 出版日期:2023-07-26 发布日期:2023-07-26
  • 通讯作者: 张德利 E-mail:zhangdl64@126.com

Multiplicity of Solutions for Nonlinear Kirchhoff Equation with Electromagnetic Fields and Critical Hardy-Littlewood-Sobolev Term

ZHAO Min, ZHANG Deli   

  1. College of Mathematics, Changchun Normal University,  Changchun 130032, China
  • Received:2022-09-28 Online:2023-07-26 Published:2023-07-26

摘要: 首先, 用分数阶集中紧性原理, 在全空间上证明一类带有电磁场和临界Hardy-Littlewood-Sobolev项的非线性Kirchhoff方程的紧性条件, 
以克服该方程由于无界区域以及临界项导致的紧性条件缺失问题; 其次结合对称山路定理, 证明该方程满足山路结构, 并结合亏格理论证明该方程解的多重性.

关键词: Kirchhoff方程, 临界Hardy-Littlewood-Sobolev项, 集中紧性原理, 变分方法

Abstract: Firstly, by using the fractional order concentration-compactness principle, we proved the compactness conditions for a class of nonlinear Kirchhoff equations with electromagnetic fields and critical Hardy-Littlewood-Sobolev term in the whole space to overcome the problem of lack of compactness conditions caused by unbounded regions and critical term in this equation. Secondly, combined with the symmetric mountain path theorem, we proved that the equation satisfied the mountain path structure, and proved the multiplicity of the solution to the equation by using genus theory.

Key words: Kirchhoff equation, critical Hardy-Littlewood-Sobolev term, concentration-compactness principle, variational method

中图分类号: 

  •