吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (5): 1112-1122.

• • 上一篇    下一篇

基于扩展Span表示的电力变压器运维知识抽取与知识图谱构建

牛增贤1, 刘海峰1, 徐伟峰1, 李刚1,2, 谢庆3, 王洪涛1,2   

  1. 1. 华北电力大学 计算机系, 河北 保定 071003; 2. 华北电力大学 复杂能源系统智能计算教育部工程研究中心, 河北 保定 071003;
    3. 华北电力大学 电力工程系, 河北 保定 071003
  • 收稿日期:2022-11-10 出版日期:2023-09-26 发布日期:2023-09-26
  • 通讯作者: 王洪涛 E-mail:wanght@ncepu.edu.cn

Construction of Power Transformer Operation and Maintenance Knowledge Extraction and Knowledge Graph Based on  Extended Span Representation#br#

NIU Zengxian1, LIU Haifeng1, XU Weifeng1, LI Gang1,2, XIE Qing3, WANG Hongtao1,2   

  1. 1. Department of Computer, North China Electric Power University, Baoding 071003, Hebei Province, China;
    2. Engineering Research Center of Intelligent Computing for Complex Energy Systems Ministry of Education, North China Electric Power University, Baoding 071003, Hebei Province, China; 
    3. Department of Electrical Engineering, North China Electric Power University, Baoding 071003, Hebei Province, China
  • Received:2022-11-10 Online:2023-09-26 Published:2023-09-26

摘要: 为实现电力变压器运维知识的有效沉淀, 以运维文本为研究对象, 提出一种融合规则的电力变压器运维知识图谱深度构建框架. 首先根据专家指导自顶向下构建知识图谱概念层; 然后融合规则和深度神经网络模型抽取知识, 构建知识图谱的数据层. 针对运维文本中的实体界限模糊和上下文信息利用不充分问题, 提出一种通过扩展上下文信息和BERT(bidirectional encoder representations from transformers)获取扩展Span标签的方法, 用于实体和关系抽取. 算例分析表明, 该方法在电力变压器运维数据集中知识抽取效果良好.

关键词: 电力变压器, 运维文本, 知识图谱, 深度学习, 知识抽取

Abstract: In order to realize the effective precipitation of power transformer operation and maintenance knowledge, taking the operation and
 maintenance text as the research object, we proposed a framework for deep construction of power transformer operation and maintenance knowledge graph with fusion rules. We  first constructed the concept layer of the knowledge graph from top to bottom according to the guidance of experts, and then  integrated rules and deep neural network models to extract knowledge and construct the data layer of the knowledge graph. Aiming at the blurred boundaries of entities and insufficient utilization of contextual information in operation and maintenance texts, we proposed a method for obtaining extended Span lables by extending contextual information and bidirectional encoder representations from transformers  for entity and relation extraction. The example analysis shows that  the proposed method performs well in  knowledge extraction from  power transformer operation and maintenance data.

Key words:  power transformer, operation and maintenance text, knowledge graph, deep learning, knowledge extraction

中图分类号: 

  • TP399