吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (5): 1123-1130.

• • 上一篇    下一篇

面向移动群智感知的两阶段位置隐私保护方法

王辉1, 毕成玉2, 申自浩2, 刘沛骞1   

  1. 1. 河南理工大学 软件学院, 河南 焦作 454000; 2. 河南理工大学 计算机科学与技术学院, 河南 焦作 454000
  • 收稿日期:2022-09-30 出版日期:2023-09-26 发布日期:2023-09-26
  • 通讯作者: 申自浩 E-mail:szh@hpu.edu.cn

Two-Stage Location Privacy Protection Method for Mobile Crowd Sensing

WANG Hui1, BI Chengyu2, SHEN Zihao2, LIU Peiqian1   

  1. 1. School of Software, Henan Polytechnic University, Jiaozuo 454000, Henan Province, China; 
    2. School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, Henan Province, China
  • Received:2022-09-30 Online:2023-09-26 Published:2023-09-26

摘要: 针对传统移动群智感知中工人的位置隐私泄露问题, 提出一种两阶段位置隐私保护方法. 首先, 设计一种结合区块链和边缘计算的系统模型代替第三方平台; 其次, 在任务分配阶段基于同态加密提出了密文时间工人选择算法, 通过边缘节点的协作高效完成任务分配; 最后, 在数据上传阶段给出双扰动本地差分隐私算法, 工人在本地扰动位置数据, 并加入干扰因子ω平衡保护强度和质量损失. 仿真实验结果表明, 该方法与现有算法相比提高了任务完成率, 降低了服务质量损失, 并能有效保护工人的位置隐私.

关键词: 移动群智感知, 区块链, 边缘计算, 位置隐私, 同态加密, 差分隐私

Abstract: Aiming at the problem of location privacy leakage of workers in traditional mobile crowd sensing, we proposed a two-stage location privacy protection method. Firstly, a system model combining blockchain and edge computing was designed to replace the third-party platform. Secondly, a ciphertext time worker selection algorithm based on homomorphic encryption was proposed in the task allocation stage, which efficiently completed the task allocation through the cooperation of edge nodes. Finally, in the data upload stage, a two disturbance local differential privacy algorithm was given, workers perturbed location data locally, and the interference factor ω was added to balance the protection strength and the quality  loss. Simulation experimental results show that compared with the existing algorithms, the proposed method improves the task completion rate, reduces the  service quality loss, and effectively protects the location privacy of workers.

Key words: mobile crowd sensing, block chain, edge computing, location privacy, homomorphic encryption, differential privacy

中图分类号: 

  •