吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (5): 1159-1168.

• • 上一篇    下一篇

基于稠密连接的多形性腺瘤辅助诊断

董立岩1,2, 张玥敏1, 朱晓冬1,2, 张小利1, 赵博1   

  1. 1. 吉林大学 计算机科学与技术学院, 长春 130012;2. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012
  • 收稿日期:2022-10-03 出版日期:2023-09-26 发布日期:2023-09-26
  • 通讯作者: 朱晓冬 E-mail:zhuxd@jlu.edu.cn

Auxiliary Diagnosis of Pleomorphic Adenoma Based on Dense Connection

DONG Liyan1,2, ZHANG Yuemin1, ZHU Xiaodong1,2, ZHANG Xiaoli1, ZHAO Bo1   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China;2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2022-10-03 Online:2023-09-26 Published:2023-09-26

摘要: 针对多形性腺瘤诊断完全依赖人工的问题, 提出一种计算机辅助诊断方法. 先通过采集数据并构建多形性腺瘤数据集, 对当前稠密连接网络进行改进并融合通道注意力机制进行疾病组织分类特征提取, 得到组织类别和概率, 然后使用CART(classification and regression tree)进行推理学习, 得到诊断结果. 对难判断的类别选择进行人工辅助, 进而实现对多形性腺瘤疾病的计算机辅助工作. 实验结果表明, 该方法在分类识别模块分类提取准确率达97.7%, 决策树推理诊断准确率达100%. 此外, 分类识别模块在血细胞分类领域的准确率达98.6%. 该方法具有一定的迁移性和有效性.

关键词: 计算机应用, 多形性腺瘤, 稠密连接, 注意力机制, 决策树

Abstract: Aiming at the problem that the diagnosis of pleomorphic adenoma completely relied on manual labor, we proposed a computer
-assisted diagnostic method. Firstly, by  collecting data and constructing a pleomorphic adenoma dataset, the current dense connection nertwork was improved and fused with the channel attention mechanism for disease tissue classification feature extraction to obtain tissue categories and probabilities. Secondly, by using classification and regression trees (CART), we obtained diagnostic results and  provided manual assistance in the selection of difficult categories, thus achieving  computer-assisted work on pleomorphic adenomatous diseases. The experimental results show that the method  achieves  classification extraction accuracy of 97.7% in the classification recognition module, and decision tree inference diagnostic accyracy of 100%. In addition, the accuracy of classification recognition module  achieves 98.6%  in the field of blood cell classification, and the method has certain transferability and validity.

Key words: computer application, polymorphic adenoma, dense connection, attention mechanisms, decision tree

中图分类号: 

  • TP391