吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (1): 116-0121.

• • 上一篇    下一篇

基于多项式特征生成的卷积神经网络

刘铭1, 肖志成1, 于晓东2   

  1. 1. 长春工业大学 数学与统计学院, 长春 130012; 2. 上海杉达学院 信息科学与技术学院, 上海 201209
  • 收稿日期:2023-05-09 出版日期:2024-01-26 发布日期:2024-01-26
  • 通讯作者: 于晓东 E-mail:xdyu@sandau.edu.cn

Convolutional Neural Networks Based on Polynomial Feature Generation

LIU Ming1, XIAO Zhicheng1, YU Xiaodong2   

  1. 1. College of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China;
    2. School of Information Scicnce and Technology, Sanda University, Shanghai 201209, China
  • Received:2023-05-09 Online:2024-01-26 Published:2024-01-26

摘要: 基于一维特征数据的多项式特征生成法, 提出一种高维特征数据利用多项式特征生成法生成特征数据的数据增强算法, 同时提出一种卷积神经网络训练时将生成的多项式特征数据与神经网络模型相融合的算法, 其可将生成的多项式特征数据与卷积神经网络模型进行有机结合, 并改善卷积神经网络模型建模时由于数据样本有限、 数据样本总量固定、 可使用的数据样本差异性小等数据限制所导致的模型识别准确率低、 模型的泛化性能有限等问题. 实验结果表明, 该方法的卷积神经网络模型准确率得到了有效提升.

关键词: 卷积神经网络, 特征生成, 多项式, 特征堆叠

Abstract: Based on the polynomial feature generation method for one-dimensional feature data, we proposed a data augmentation algorithm that used the polynomial feature generation method to generate feature data for high-dimensional feature data. At the same time, we proposed an  algorithm  that combined the generated polynomial feature data with the neural network model during convolutional neural network training, which could organically combine the  generated polynomial feature data with the convolutional neural network model, and  improve the low recognition accuracy  and the limited generalization performance of model caused by data limitations such as limited data samples, fixed total number of data samples, and differences in available data samples  when modeling convolutional neural network models. Experimental results show that the accuracy of the convolutional neural network model using this method achieves significant improvement.

Key words: convolutional neural network, feature generation, polynomial, feature stacking

中图分类号: 

  • TP183