吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (1): 87-0091.

• • 上一篇    下一篇

能量临界分数阶非线性Schrodinger方程的整体弱解

武少琪1, 廖梦兰1, 曹春玲2   

  1. 1. 河海大学 数学学院, 南京 211100; 2. 吉林大学 数学学院, 长春 130012
  • 收稿日期:2023-06-27 出版日期:2024-01-26 发布日期:2024-01-26
  • 通讯作者: 廖梦兰 E-mail:liaoml@hhu.edu.cn

Global Weak Solutions for Energy-Critical Fractional Nonlinear Schrodinger Equations

WU Shaoqi1, LIAO Menglan1, CAO Chunling2   

  1. 1. School of Mathematics, Hohai University, Nanjing 211100, China; 2. College of Mathematics, Jilin University, Changchun 130012, China
  • Received:2023-06-27 Online:2024-01-26 Published:2024-01-26

摘要: 利用紧性方法给出能量临界分数阶非线性Schrodinger方程Cauchy问题解的存在性, 并证明Cauchy问题存在整体解. 通过构造逼近方程, 对满足逼近方程的解序列取极限, 得到的极限函数即为能量临界分数阶非线性Schrodinger方程的整体弱解, 并证明该弱解满足能量不等式和质量守恒性质.

关键词: 非线性Schrodinger方程, 能量临界, 分数阶, 弱解, 紧性

Abstract: By using the compactness method, we gaved the existence of solutions to the Cauchy problem of the energy-critical fractional  nonlinear Schrodinger equation and proved the existence of global solution to the Cauchy problem. By constructing the approximation equation and taking the limit of the solution sequence satisfying the approximation equation, the obtained limit function was the global weak solution of the energy-critical fractional nonlinear Schrodinger equation, and it was proved that the weak solution satisfied the energy inequality and mass conservation property.

Key words: nonlinear Schrodinger equation, energy-critical, fractional order, weak solution, compactness

中图分类号: 

  • O175.2