吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (1): 92-0099.

• • 上一篇    下一篇

融合协同过滤的神经Bandits推荐算法

张婷婷1,2, 欧阳丹彤1,2, 孙成林3, 白洪涛1,2   

  1. 1. 吉林大学 计算机科学与技术学院, 长春 130012; 2. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012;
    3. 吉林大学白求恩第一医院 内分泌与代谢科, 长春 130021
  • 收稿日期:2021-11-16 出版日期:2024-01-26 发布日期:2024-01-26
  • 通讯作者: 白洪涛 E-mail: baiht@jlu.edu.cn

Neural Bandits Recommendation Algorithm Based on Collaborative Filtering

ZHANG Tingting1,2, OUYANG Dantong1,2, SUN Chenglin3, BAI Hongtao1,2   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2. Key Laboratory of Symbolic Computation and Knowledge Engineer of Ministry of Education, Jilin University, Changchun 130012, China; 
    3. Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun 130021, China
  • Received:2021-11-16 Online:2024-01-26 Published:2024-01-26

摘要: 针对数据稀疏性和“冷启动”对协同过滤的限制以及现有的协同多臂老虎机算法不适用于非线性奖励函数的问题, 提出一种融合协同过滤的神经Bandits推荐算法COEENet. 首先, 采用双神经网络结构学习预期奖励及潜在增益; 其次, 考虑邻居协同作用; 最后, 构造决策器进行最终决策. 实验结果表明, 该方法在累积遗憾上优于4种基线算法, 推荐效果较好.

关键词: 协同过滤, 多臂老虎机算法, 推荐系统, 冷启动

Abstract: Aiming at the problems of the limitations of  data sparsity and “cold start” on collaborative filtering and the inapplicability of the existing collaborative multi-armed Bandit algorithm to nonlinear reward functions, we proposed a neural Bandit recommendation algorithm COEENet, which combined collaborative filtering. Firstly, it adopted a dual neural network structure to learn expected  rewards and  potential gains. Secondly, we considered the collaborative effect of neighbors. Finally, a decision-maker was constructed to make the final decision. The experimental results show that the proposed method is superior to the four baseline algorithms in cumulative regret, and has a good recommendation effect.

Key words: collaborative filtering, multi-armed Bandit algorithm, recommendation system, cold start

中图分类号: 

  • TP301