吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (2): 222-0236.

• • 上一篇    下一篇

 一类由变分不等式驱动的模糊分数阶微分包含系统解的存在性

李慧敏, 顾海波   

  1. 新疆师范大学 数学科学学院, 乌鲁木齐 830017
  • 收稿日期:2023-06-02 出版日期:2024-03-26 发布日期:2024-03-26
  • 通讯作者: 顾海波 E-mail:hbgu_math@163.com

Existence of Solutions for a Class of Fuzzy Fractional Differential Inclusion Systems Driven by Variational Inequalities

LI Huimin, GU Haibo   

  1. School of Mathematical Sciences, Xinjiang Normal University, Urumqi 830017, China
  • Received:2023-06-02 Online:2024-03-26 Published:2024-03-26

摘要: 考虑一类动态模糊系统, 该系统由模糊Atangana-Baleanu分数阶微分包含和变分不等式组成, 称为模糊分数阶微分变分不等式(FFDVI), 它包括了模糊分数阶微分包含和变分不等式两个领域的研究, 拓宽了模糊环境下的可研究问题, 该模型在同一框架内捕获了模糊分数微分包含和分数微分变分不等式的期望特征. 利用Krasnoselskii不动点定理, 得到了FFDVI在某些温和条件下解的存在性.

关键词: Atangana-Baleanu分数阶导数, 分数阶模糊微分变分不等式, Krasnoselskii不动点定理, 解的存在性

Abstract: We considered a class of dynamic fuzzy systems, which consisted of fuzzy Atangana-Baleanu fractional differential inclusion and variational inequalities, called fuzzy fractional differential variational inequalities (FFDVI). It included the two fields of fuzzy fractional differential inclusion and variational inequalities, expanding the researchable problems in fuzzy environments. The model captured the desired features of the fuzzy fractional differential inclusion and fractional differential variational inequalities within the same framework. By using Krasnoselskii fixed point theorem, the existence of solutions of FFDVI under some mild conditions was obtained.

Key words: Atangana-Baleanu fractional derivative, fractional fuzzy differential variational inequality, Krasnoselskii fixed point theorem, existence of solution

中图分类号: 

  • O175.14