吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (3): 547-555.

• • 上一篇    下一篇

一阶混合整数值负二项自回归模型

李晗1, 连成1, 方引芳1, 杨凯2   

  1. 1. 长春大学 数学与统计学院, 长春 130022; 2. 长春工业大学 数学与统计学院, 长春 130012
  • 收稿日期:2023-08-20 出版日期:2024-05-26 发布日期:2024-05-26
  • 通讯作者: 杨凯 E-mail:yangkai@ccut.edu.cn

First-Order Mixed Integer-Valued Negative Binomial Autoregressive Models

LI Han1, LIAN Cheng1, FANG Yinfang1, YANG Kai2   

  1. 1. School of Mathematics and Statistics, Changchun University, Changchun 130022, China; 2. School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China
  • Received:2023-08-20 Online:2024-05-26 Published:2024-05-26

摘要: 考虑复杂整数值时间序列数据的建模问题. 首先, 提出一类一阶混合整数值负二项自回归模型, 并证明该模型的严平稳遍历性, 讨论该模型的转移概率、 期望、方差等概率统计性质; 其次, 研究该模型的最大似然估计问题, 得到了估计量的渐近正态性, 并在数值模拟的基础上进行实证分析. 实证分析结果表明, 该模型在拟合毒品犯罪次数数据时性能良好.

关键词: 整数值时间序列, 混合负二项自回归模型, 平稳性, 极大似然估计

Abstract: We considered the modeling problem of complex integer-valued time series data. Firstly, we  proposed a  class of first-order mixed integer-valued negative binomial autoregressive models, proved the strict stationary and ergodicity of the model, and discussed the probabilistic and statistical properties of the model such as transition probability, expectation, variance, etc. Secondly, we studied the  maximum likelihood estimation problem of the model, obtained the asymptotic normality of the estimator, and conducted empirical analysis on the basis of numerical simulations. The empirical analysis results show that the model performs well in fitting the drug offense count data.

Key words:  , integer-valued time series, mixed negative binomial autoregressive model, stationarity, maximum likelihood estimation

中图分类号: 

  • O212