吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (3): 556-564.

• • 上一篇    下一篇

一类具有奇异项和对数源的四阶薄膜方程解的爆破和衰退估计

吴秀兰, 赵雅鑫, 杨晓新   

  1. 长春理工大学 数学与统计学院, 长春 130022
  • 收稿日期:2023-09-06 出版日期:2024-05-26 发布日期:2024-05-26
  • 通讯作者: 吴秀兰 E-mail:chjlsywxl@126.com

Blow-up and Decay Estimate of Solution for a Class of Fourth-Order Thin-Film Equation with Singular Term and Logarithmic Source

WU Xiulan, ZHAO Yaxin, YANG Xiaoxin   

  1. School of Mathematics and Statistics, Changchun University of Science and Technology, Changchun 130022, China
  • Received:2023-09-06 Online:2024-05-26 Published:2024-05-26

摘要: 考虑一类具有奇异项和对数源的四阶薄膜方程. 首先利用截断函数和Galerkin逼近相结合给出该方程弱解的局部存在性; 然后借助位势井方法和Rellich不等式, 证明一定条件下该方程弱解的整体存在性和衰减估计; 最后, 利用凸方法证明该方程的解在有限时刻爆破, 并给出爆破时间的上界和下界.

关键词: 奇异项, 对数非线性项, 四阶, 整体存在, 爆破

Abstract: We considered a class of fourth-order thin-film equation with singular term and logarithmic source. Firstly, we obtained the local existence of weak solutions to the equation by  combining truncation function and  Galerkin approximation. Secondly, by virtue of the potential well method and Rellich inequality, we proved the global existence and decay estimate of weak solution to the equation under certain conditions. Finally, we proved the blow-up result of the  solution to the equation at a finite time by using the convex method, and gave the lower and upper bounds for blow-up time.

Key words: singular term, logarithmic nonlinearity, fourth-order, global existence, blow-up

中图分类号: 

  • O175.8