吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (3): 683-690.

• • 上一篇    下一篇

基于改进的CNN-Transformer加密流量分类方法

高新成1, 张宣2, 樊本航2, 刘威2, 张海洋2   

  1. 1. 东北石油大学 现代教育技术中心, 黑龙江 大庆 163318; 2. 东北石油大学 计算机与信息技术学院, 黑龙江 大庆 163318
  • 收稿日期:2023-06-12 出版日期:2024-05-26 发布日期:2024-05-26
  • 通讯作者: 张宣 E-mail: dyzx@stu.nepu.edu.cn

Improved CNN-Transformer Based Encrypted Traffic Classification Method

GAO Xincheng1, ZHANG Xuan2, FAN Benhang2, LIU Wei2, ZHANG Haiyang2   

  1. 1. Modern Education Technology Center, Northeast Petroleum University, Daqing 163318, Heilongjiang Province, China;
    2. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, Heilongjiang Province, China
  • Received:2023-06-12 Online:2024-05-26 Published:2024-05-26

摘要: 针对传统加密流量分类模型对特征提取不足导致分类准确率较低等问题, 使用深度学习技术, 提出一种基于改进的卷积神经网络结合Transformer的加密流量分类模型. 为提高分类精度, 首先将数据集切割填充并完成标准化处理; 然后采用Transformer网络模型中的多头注意力机制捕获长距离的特征依赖, 利用卷积神经网络提取局部特征; 最后加入Inception模块实现多维特征提取和特征融合, 完成模型训练和加密流量分类. 在公共数据集ISCX VPN-non-VPN 2016上进行实验验证, 实验结果表明, 该模型的分类准确率达98.5%, 精确率、 召回率和F1值均达98.2%以上, 相比其他模型分类效果更优.

关键词: 加密流量分类, 卷积神经网络, 多头注意力机制, 特征融合

Abstract: Aiming at the problem of insufficient feature extraction resulting in low classification accuracy of the traditional encrypted traffic classification model, we  proposd an encrypted traffic classification model based on an improved convolutional neural network combined with Transformer by using deep learning techniques.  In order to improve the classification accuracy, firstly, we cut and filled the dataset,  and completed standardization processing. Secondly, the multi-head attention mechanism in the Transformer network model was used to capture long-distance feature dependencies, and the convolutional neural network was used to extract local features. Finally, the Inception module was added to achieve multi-dimensional feature extraction and feature fusion, and the model training and encrypted traffic classification were completed. The experimental verification was conducted on the 
ISCX VPN-non-VPN 2016 public dataset, the experimental results show that the classification accuracy of the proposed  model reaches 98.5%, with the precision rate, recall rate and F1 value  all exceeding  98.2%, which show better classification effect compared with other models.

Key words: encrypted traffic classification, convolutional neural network, multi-head attention mechanism, feature fusion

中图分类号: 

  • TP393.08