吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (3): 704-712.

• • 上一篇    下一篇

基于改进鲸鱼优化PID的无刷直流电机转速控制算法

兰淼淼, 胡黄水, 王婷婷, 王宏志   

  1. 长春工业大学 计算机科学与工程学院, 长春 130012
  • 收稿日期:2023-06-12 出版日期:2024-05-26 发布日期:2024-05-26
  • 通讯作者: 胡黄水 E-mail:huhs08@163.com

Speed Control Algorithm of Brushless DC Motor Based on Improved Whale Optimization PID

LAN Miaomiao, HU Huangshui, WANG Tingting, WANG Hongzhi   

  1. School of Computer Science & Engineering, Changchun University of Technology, Changchun 130012, China
  • Received:2023-06-12 Online:2024-05-26 Published:2024-05-26

摘要: 针对鲸鱼优化算法易陷入局部最优以及无刷直流电机(brushless DC motor, BLDCM)速度控制响应慢、 超调量大等缺点, 提出一种改进鲸鱼优化算法(improve whale optimization algorithm, IWOA)优化PID(proportional integral derivative)参数的无刷直流电机速度控制算法. 该算法采用高斯变异因子、 自适应权重因子和动态阈值相结合对鲸鱼优化算法进行优化. 仿真实验结果表明, 改进鲸鱼优化PID的无刷直流电机转速控制算法具有更快的收敛速度以及较小的超调现象, 鲁棒性也更好.

关键词: PID控制, 改进鲸鱼优化算法, 转速控制, 无刷直流电机

Abstract: Aiming at  the problems that  the whale optimization algorithm was prone to getting stuck in local optima and had drawbacks such as slow  speed control response and large overshoot of brushless DC motor, we  proposed an improved whale optimization algorithm (IWOA) for optimizing proportional integral derivative (PID) parameters in brushless DC motor speed control. The algorithm combined Gaussian mutation factor, adaptive weight factor, and dynamic threshold to optimize the whale optimization algorithm. The simulation experiment results show that the  improved whale optimization  PID speed control algorithm of brushless DC motor has faster  convergence rate, smaller overshoot phenomenon, and better robustness.

Key words: PID control, improved , whale optimization algorithm, speed control, brushless DC motor

中图分类号: 

  • TP391