吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (4): 915-922.

• • 上一篇    下一篇

引入激活扩散的类分布关系近邻分类器

董飒1,2, 欧阳若川3, 徐海啸1, 刘杰1,2, 刘大有1,2, 李婷婷1,2, 王鑫禄1,4   

  1. 1. 吉林大学 计算机科学与技术学院, 长春 130012; 2. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012; 3. 吉林大学 党委教师工作部, 长春 130012; 4. 吉林大学 国际教育学院, 长春 130012
  • 收稿日期:2023-09-25 出版日期:2024-07-26 发布日期:2024-07-26
  • 通讯作者: 李婷婷 E-mail:ttlee@jlu.edu.cn

Introducing Class-Distribution Relational Neighbor Classifier with Activation Spreading

DONG Sa1,2, OUYANG Ruochuan3, XU Haixiao1, LIU Jie1,2, LIU Dayou1,2, LI Tingting1,2, WANG Xinlu1,4   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China; 2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China;3. Faculty Work Department of Party Committee, Jilin University, Changchun 130012, China;4. College of International Education, Jilin University, Changchun 130012, China
  • Received:2023-09-25 Online:2024-07-26 Published:2024-07-26

摘要: 针对同质性关系分类器基于一阶Markov假设简化处理的局限性, 在类分布关系近邻分类器构建类向量和参考向量时, 引入局部图排序激活扩散方法, 并结合松弛标注的协作推理方法, 通过适当扩大分类时邻居节点的范围增加网络数据中待分类节点的同质性, 从而降低分类错误率. 对比实验结果表明, 该方法扩大了待分类节点的邻域, 在网络数据上分类精度较好.

关键词: 人工智能, 网络数据分类, 激活扩散, 类分布关系近邻分类器, 协作推理

Abstract: Aiming at the limitation of the simplifying the processing of homophily relational classifiers based on first-order Markov assumption, when constructing the class vector and reference vector in the class-distribution relational neighbor classifier, we introduced the activation spreading algorithm of local graph ranking, combined with the relaxation labeling collective inference method. By appropriately expanding the range of neighboring nodes during classification, we increased the homophily of nodes to be classified in network data, thereby reducing the error rate of classification. The comparative experimental results show that this method expands the  neighborhood of nodes to be classified, and has good classification accuracy  on network data.

Key words: artificial intelligence, network data classification, activation spreading, class-distribution relational neighbor classifier, collective inference

中图分类号: 

  • TP301