吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (4): 923-932.

• • 上一篇    下一篇

基于偏好和虚拟适应度的两阶段依赖任务卸载算法

董立岩1,2, 齐竞则1, 刘元宁1,2, 冯嘉辉1   

  1. 1. 吉林大学 计算机科学与技术学院, 长春 130012;2. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012
  • 收稿日期:2023-10-09 出版日期:2024-07-26 发布日期:2024-07-26
  • 通讯作者: 董立岩 E-mail:dongly@jlu.edu.cn

Two-Stage Dependent Task Offloading Algorithm Based on Preference and Virtual Fitness

DONG Liyan1,2, QI Jingze1, LIU Yuanning1,2, FENG Jiahui1   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China;
    2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2023-10-09 Online:2024-07-26 Published:2024-07-26

摘要: 针对云边端协同环境中依赖任务卸载时效率低以及任务卸载失败的问题, 提出一种基于偏好和虚拟适应度的两阶段依赖任务卸载算法. 第一阶段, 根据提出的二维卸载偏好因子对依赖任务的部分子任务进行直接卸载决策, 从而有效缩小遗传算法初始种群的规模. 第二阶段, 提出基于虚拟适应度的启发式交叉方法, 并对基于参考点的快速非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅲ, NSGA-Ⅲ)的交叉算子进行改进, 保留了种群多样性并提升了算法收敛速度, 最后使用改进的算法对所有依赖任务的子任务进行最
优卸载决策集的搜索. 实验结果表明, 与其他算法相比, 该算法在任务完成时间、 任务能耗和边缘云集群成本方面平均优化了10.2%~18.3%, 并且将任务失败率平均降低了10.7%~25.6%.

关键词: 云边端协同环境, 依赖任务卸载, 多目标优化, 虚拟适应度, 遗传算法

Abstract: Aiming at the problem of low efficiency and failure of dependent task offloading  in the cloud-edge-end architecture, we proposed a two-stage  dependent task offloading algorithm based on preference and virtual fitness. In the first stage, based on the proposed two-dimensional offloading preference factor,  direct offloading decisions were made for some sub-tasks of the dependent tasks, thus effectively reducing the size of the initial population of the genetic algorithm. In the second stage, we proposed a heuristic crossover method based on virtual fitness  to improve the crossover operator of  the fast non-dominated sorting genetic algorithm Ⅲ(NSGA-Ⅲ) based on reference points, which preserved the diversity of population and improved the convergence speed of the algorithm. Finally, we used  the improved algorithm to search for the optimal offloading decision set  for the subtasks of all dependent tasks. The experimental results show that compared with other algorithms, the proposed algorithm 
optimizes task completion time, task energy consumption and edge cloud cluster cost by 10.2%—18.3% on average and reduces the task failure rate by 10.7%—25.6% on average.

Key words: cloud-edge-end architecture, dependent task offloading, multi-objective optimization, virtual fitness, genetic algorithm

中图分类号: 

  • TP393