吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (5): 1043-1051.

• • 上一篇    下一篇

分数阶Boussinesq-Coriolis方程在变指数Fourier-Besov空间中解的整体适定性和正则性

李风娟, 孙小春, 吴育联   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2023-12-13 出版日期:2024-09-26 发布日期:2024-09-26
  • 通讯作者: 孙小春 E-mail:sunxiaochun@nwnu.edu.cn

Global Well-Posedness and Regularity of Solutions to  Fractional Boussinesq-Coriolis Equations in Variable Exponent Fourier-Besov Spaces

LI Fengjuan, SUN Xiaochun, WU Yulian   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2023-12-13 Online:2024-09-26 Published:2024-09-26

摘要: 基于变指数Fourier-Besov函数空间理论, 利用Littlewood-Paley分解工具、 Fourier局部化方法和Banach压缩映射原理, 通过建立线性项与非线性项的估计, 证明分数阶Boussinesq-Coriolis方程在临界变指数空间中解的整体适定性和Gevrey类正则性.

关键词: Boussinesq-Coriolis方程, 变指数Fourier-Besov空间, 整体适定性, Gevrey类正则性

Abstract: Based on the theory of variable exponent Fourier-Besov function spaces, we used Littlewood-Paley decomposition tools, Fourier localization methods and Banach contraction mapping principle. By establishing estimations for both linear and nonlinear terms, we proved the global well-posedness and the Gevrey class regularity of the solutions to the fractional Boussinesq-Coriolis equations in critical variable exponent Fourier-Besov spaces.

Key words: Boussinesq-Coriolis equation, variable exponent Fourier-Besov space, global well-posedness, Gevrey class regularity

中图分类号: 

  • O174.2