吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (5): 1063-1071.

• • 上一篇    下一篇

一类具有交叉反应扩散的捕食-食饵模型的动态分歧

亓子成, 刘瑞宽, 吴辰龙   

  1. 西南石油大学 理学院, 成都 610500
  • 收稿日期:2024-01-25 出版日期:2024-09-26 发布日期:2024-09-26
  • 通讯作者: 刘瑞宽 E-mail:liuruikuan2008@163.com

Dynamic Bifurcation of a Class of Predator-Prey Models with Cross Reaction Diffusion

QI Zicheng, LIU Ruikuan, WU Chenlong   

  1. School of Science, Southwest Petroleum University, Chengdu 610500, China
  • Received:2024-01-25 Online:2024-09-26 Published:2024-09-26

摘要: 考虑一类具有Holling-Ⅱ型功能反应函数的交叉反应扩散模型在非齐次Dirichlet边界条件下的动态分歧问题. 首先, 用谱分析理论得到对应的线性化问题特征值的临界穿越条件; 其次, 选取环境承载系数为分歧参数, 利用中心流形约化和动态分歧理论得到该系统的动态跃迁类型和分歧解的解析表达式. 最后, 利用有限差分法, 在不同的参数情形下给出系统的斑图变化模式.

关键词: 反应扩散模型, 特征值分析, 动态跃迁, 数值模拟

Abstract: We considered the dynamic bifurcation  problem of a class of cross-reaction-diffusion models with Holling-Ⅱ functional response function under non-homogeneous Dirichlet boundary conditions. Firstly, the critical crossing conditions for the corresponding linearization problem eigenvalues were obtained by using the spectral analysis theory. Secondly,  the environmental carrying coefficient was selected as the bifurcation parameter, the analytical expression of the dynamic transition type and bifurcation solution of the system was obtained by using the center manifold reduction and the dynamic bifurcation theory. Finally, by using the finite difference method, the pattern change patterns of the system were given under  different parameter conditions.

Key words: reaction-diffusion model, eigenvalue analysis, dynamic transition, numerical simulation

中图分类号: 

  • O175.29