吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (1): 76-0082.

• • 上一篇    下一篇

基于知识图谱中路径推理的多轮对话模型

化青远1, 彭涛1,2, 崔海1, 毕海嘉1   

  1. 1. 吉林大学 计算机科学与技术学院, 长春130012;2. 吉林大学 符号计算与知识工程教育部重点实验室, 长春 130012
  • 收稿日期:2024-02-07 出版日期:2025-01-26 发布日期:2025-01-26
  • 通讯作者: 彭涛 E-mail:tpeng@jlu.edu.cn

Multi Round Conversational Model Based on Path Reasoning in Knowledge Graph

HUA Qingyuan1, PENG Tao1,2, CUI Hai2, BI Haijia1   

  1. 1. College of Computer Science and Technology, Jilin University, Changchun 130012, China; 2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
  • Received:2024-02-07 Online:2025-01-26 Published:2025-01-26

摘要: 基于图编码器的路径推理方法, 将知识图谱多轮对话的实体间关系作为节点图, 编码器根据每轮对话对节点逐次编码从而模拟语义推理过程, 最终预测当前对话的答案实体, 解决了对话中存在缺省词和指代词的问题以及复杂语境下的特征提取问题. 实验结果表明, 该方法更关注实体间的关系, 有助于保持推理的完整性和准确性, 在一定程度上证明了将上下文建模为关系节点图的实用性和有效性.

关键词: 知识图谱, 自然语言处理, 多轮问答, 卷积神经网络

Abstract: Based on a path reasoning method of graph encoder, we used the entity relationships between multi rounds of dialogue in the knowledge graph as a node graph. The encoder sequentially encoded the nodes according to each round of dialogue to simulate the semantic reasoning process, and utimately predicted the answer entity for the current dialogue. This approach solved the problems of missing words and pronouns in dialogues, as well as feature extraction problems in complex contexts. The experimental results show that the method focused more on the relationships between entities, which helped to maintain the integrity and accuracy of reasoning. To a certain extent, it proved the practicality and effectiveness of modeling context as a relational node graph.

Key words:  , knowledge graph, natural language process, multi round of question answering, convolutional neural network

中图分类号: 

  • TP391