吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (5): 1337-1347.

• • 上一篇    下一篇

求解四阶半线性抛物方程的B样条有限元法

秦丹丹1, 李阳晴1, 黄文竹2   

  1. 1. 空军航空大学, 长春 130022; 2. 贵州医科大学 生物与工程学院, 贵阳 550004
  • 收稿日期:2025-01-26 出版日期:2025-09-26 发布日期:2025-09-26
  • 通讯作者: 黄文竹 E-mail:hwenzhu@gmc.edu.cn

B-Spline Finite Element Method for Solving Fourth-Order Semi-linear Parabolic Equation

QIN Dandan1, LI Yangqing1, HUANG Wenzhu2   

  1. 1. Aviation University of Air Force, Changchun 130022, China;
    2. School of Biology and Engineering, Guizhou Medical University, Guiyang 550004, China
  • Received:2025-01-26 Online:2025-09-26 Published:2025-09-26

摘要: 首先, 用三次B样条有限元法求解一类带有变系数的四阶半线性抛物方程, 证明半离散格式的稳定性和收敛性; 其次, 用Crank-Nicolson方法离散时间变量得到全离散格式, 讨论全离散格式的稳定性和收敛性; 最后, 在数值算例中, 采用Picard迭代方法处理非线性项, 得到有限元法按照L2模和H2模的收敛阶.

关键词: 四阶半线性抛物方程, 变系数, 三次B样条有限元法, 稳定性, 收敛性

Abstract: Firstly, we used the cubic B-spline finite element method to solve a class of fourth-order semi-linear parabolic equation with the variable coefficient, and proved the stability and convergence of the semi-discrete scheme. Secondly, by using the Crank-Nicolson method to discretize the time variable, we obtained the fully discrete scheme and discussed the stability and convergence of the fully discrete scheme. Finally, in the numerical example, we used the Picard iteration method to handle the nonlinear term and obtained the convergence order of the finite element method according to L2 norm and H2 norm.

Key words: fourth-order semi-linear parabolic equation, variable coefficient, cubic B-spline finite element method, stability, convergence

中图分类号: 

  • O241.82