吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (5): 1475-1482.

• • 上一篇    下一篇

 一类耦合模型双参数反演的正则化PINNs算法

周琴, 徐定华   

  1. 浙江理工大学 理学院, 杭州 310018
  • 收稿日期:2023-11-13 出版日期:2025-09-26 发布日期:2025-09-26
  • 通讯作者: 徐定华 E-mail:dhxu6708@zstu.edu.cn

Regularized PINNs Algorithm for Two-Parameter Inversion in a Class of Coupled Models

ZHOU Qin, XU Dinghua   

  1. School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
  • Received:2023-11-13 Online:2025-09-26 Published:2025-09-26

摘要: 讨论一类温度场-结晶耦合模型的双参数反问题, 提出稳定化数值算法, 以识别成核率和生长速率, 并验证算法的抗噪性. 将耦合模型嵌入深度神经网络的损失函数中, 基于最小化损失函数更新神经网络参数, 得到正问题的近似解; 针对反问题, 构造带正则化项的损失函数, 提出正则化物理信息神经网络(PINNs)算法. 数值结果表明, 正则化PINNs算法可有效求解温度场-结晶耦合模型的反问题, 且具有抗噪稳定性.

关键词: 温度场-结晶耦合模型, 反问题, 正则化PINNs算法, 成核率-生长速率反演

Abstract: We discussed two-parameter inverse problems for a class of coupled models of temperature field and crystallization coupling model, proposed stable numerical algorithms to identify nucleation rate and growth rate, and verified anti-noise performance of the proposed algorithms. We embedded the coupled model into the loss function of a deep neural network, updated the neural network parameters based on loss function minimization, and obtained approximate solution to the forward problem. For the inverse problem, we constructed a loss function with regularization terms and proposed a regularized physics-informed neural networks (PINNs) algorithm. The numerical results show that the regularized PINNs algorithm can effectively solve the inverse problem of the temperature field and crystallization coupling model, and has noise resistance stability.

Key words: temperature field and crystallization coupling model, inverse problem, regularized PINNs algorithm, inversion of nucleation rate and growth rate

中图分类号: 

  • O469