吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (6): 1646-1654.

• • 上一篇    下一篇

基于生成对抗网络的人脸姿态转正方法

王宏志1, 祖东成1, 康祺儿2   

  1. 1. 长春工业大学 计算机科学与工程学院, 长春 130012; 2. 长春工业大学 电气与电子工程学院, 长春 130012
  • 收稿日期:2024-06-11 出版日期:2025-11-26 发布日期:2025-11-26
  • 通讯作者: 祖东成 E-mail: 3145004457@qq.com

Face Posture Correction Method Based on Generative Adversarial Networks

WANG Hongzhi1, ZU Dongcheng1, KANG Qi’er2   

  1. 1. College of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China;
    2. College of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China
  • Received:2024-06-11 Online:2025-11-26 Published:2025-11-26

摘要: 针对人脸图像姿态转正过程中存在忽略细节特征、 转正后的人脸图像纹理模糊、 人脸特征与原图像身份特征差距过大的问题, 提出一种基于双判别器双注意力机制的生成对抗网络人脸转正方法. 首先, 在利用双判别器判断人脸身份和人脸姿态的同时, 设计一种人脸表征注意力模块, 增强人脸的整体特征, 防止人脸相关信息缺失, 提高模型完善人脸图像的能力; 其次, 设计一种自适应边缘增强注意力模块, 利用自适应注意力机制和Sobel滤波器, 增强人脸边缘细节特征和人脸关键特征, 生成五官和轮廓逼真的正面人脸; 最后, 采用新的归一化层CrossNorm提高分布变化下的鲁棒性. 在数据集Multi-PIE和CFP上进行测试实验的结果表明, 该模型相较于对比模型, 生成的正脸图像人脸转正效果更好.

关键词: 生成对抗网络, 注意力机制, 人脸转正, 人脸姿态

Abstract: Aiming at the problems existing in the process of face image posture correction, such as ignoring detailed features, blurring the texture of the face image after correction, and excessive gap between the face features and the identity features of the original image, we proposed a face correction method based on the dual discriminator and dual attention mechanism of the generative adversarial network. Firstly, while using the dual discriminator to determine the face identity and face posture, we designed a face representation attention module to enhance the overall features of the face, prevented the loss of face-related information, and improved the model’s ability to perfect face images. Secondly, we designed an adaptive edge-enhanced attention module. By using the adaptive attention mechanism and Sobel filter, the edge detail features and key features of the face were enhanced to generate a frontal face with realistic facial features and contours. Finally, a new normalization layer CrossNorm was adopted to improve the robustness under distribution changes,  and the results of testing  experiments on the Multi-PIE dataset and the CFP dataset show that the proposed model generates frontal face images with better face correction effects compared to the comparison model.

Key words: generative adversarial network, attention mechanism, face correction, face posture

中图分类号: 

  • TP391.41