吉林大学学报(理学版) ›› 2025, Vol. 63 ›› Issue (6): 1685-1693.

• • 上一篇    下一篇

 一种考虑局部性的作业执行时间预测算法

闫家晨, 肖永浩, 王凌锋, 熊敏   

  1. 中国工程物理研究院计算机应用研究所, 四川 绵阳 621900
  • 收稿日期:2024-04-16 出版日期:2025-11-26 发布日期:2025-11-26
  • 通讯作者: 熊敏 E-mail:katheleen_1980@163.com

A Job Runtime Prediction Algorithm Considering Locality

YAN Jiachen, XIAO Yonghao, WANG Lingfeng, XIONG Min   

  1. Institute of Computer Application, China Academy of Engineering Physics, Mianyang 621900, Sichuan Province, China
  • Received:2024-04-16 Online:2025-11-26 Published:2025-11-26

摘要: 针对高性能计算系统中作业执行时间预测不能充分利用作业的局部性、 预测精度低的问题, 提出一种考虑局部性的作业执行时间预测算法(JRPL). 该算法综合利用作业日志数据的总体特征与局部特征, 通过投票机制结合机器学习预测和基于局部性的时序预测, 提高了预测准确性. 实验结果表明, 在Unliu Gaia和PIK IPLEX等实际调度日志数据集上, JRPL算法在平均绝对误差、 平均预测精度和命中率3个指标上均优于或不劣于作为基底的机器学习算法. 该研究结果为高性能计算系统中作业调度提供了预测模型的改良方法, 有助于进行更准确的执行时间预测, 提高系统资源利用率, 降低计算成本.

关键词: 高性能计算系统, 作业执行时间预测, 机器学习, 局部性, 预测精度

Abstract: Aiming at the problem of underutilization of job locality and  low prediction accuracy in high-performance computing systems, we  proposed a job runtime prediction algorithm considering locality. The algorithm comprehensively utilized the global and local features of job log data, and improved prediction accuracy through a voting mechanism that combined with machine learning prediction and locality-based time-series prediction. Experimental results show that on actual scheduling log datasets such as 
 Unliu Gaia and PIK IPLEX, the JRPL algorithm outperforms or is not inferior to the machine learning algorithms  as the baseline in all  three  metrics: average absolute error, average prediction accuracy, and hit rate. This research result provides an improved prediction model for job scheduling in high-performance computing systems, which hepls to make more accurate execution time forecasting, improve system resource utilization, and reduce computational costs.

Key words: high-performance computing system,  , job runtime prediction, machine learning, localized, prediction accuracy

中图分类号: 

  •