吉林大学学报(理学版) ›› 2026, Vol. 64 ›› Issue (1): 123-0133.

• • 上一篇    下一篇

基于图神经网络的服务迁移策略

周冬杨1,2, 胡红琼2, 李汶蔚3, 冯浩4   

  1. 1. 重庆移通学院 智能工程学院, 重庆 401520; 2. 公共大数据安全技术重庆市重点实验室, 重庆 401420;
    3. 重庆邮电大学 通信与信息工程学院, 重庆 400065; 4. 山西财经大学 信息学院, 太原 030006
  • 收稿日期:2024-10-28 出版日期:2026-01-26 发布日期:2026-01-26
  • 通讯作者: 周冬杨 E-mail:375614984@qq.com

Service Migration Strategy Based on Graph Neural Networks

ZHOU Dongyang1,2, HU Hongqiong2, LI Wenwei3, FENG Hao4   

  1. 1. School of Intelligent Engineering, Chongqing College of Mobile Communication, Chongqing 401520, China;
    2. Chongqing Key Laboratory of Public Big Data Security Technology, Chongqing 401420, China;
    3. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
    4. School of Information, Shanxi University of Finance and Economics, Taiyuan 030006, China
  • Received:2024-10-28 Online:2026-01-26 Published:2026-01-26

摘要: 针对动态车联网系统中服务迁移的时延和能耗最小化问题, 提出一种基于图神经网络的服务迁移策略. 首先, 建立系统模型, 将服务迁移问题建模为最小化时延和能耗的多目标优化问题; 其次, 将该问题转化为Markov决策过程, 并定义状态、 动作和奖励函数; 最后, 利用图卷积神经网络对边缘网络拓扑和节点信息进行特征提取, 并结合任务信息提出一种基于图卷积神经网络的深度强化学习任务迁移决策算法做出服务迁移决策. 仿真实验结果表明, 该算法在降低任务平均时延和能耗方面优于其他基线算法, 可为车联网环境下服务的高效、 低耗与稳定迁移提供有效解决方案.

关键词: 移动边缘计算, 服务迁移, 图神经网络, 车联网

Abstract: Aiming at  the problem of minimizing latency and energy consumption in service migration in dynamic Internet of Vehicles, we proposed a service migration strategy based on graph neural networks. Firstly, we established a system model to model the service migration problem as a multi-objective optimization problem that minimized latency and energy consumption. Secondly, we  transformed the problem into a Markov decision process, and defined the states, actions, and reward functions. Finally, a graph convolutional neural network was used  to extract features from edge network topology and node information, and combining  task information to propose a deep reinforcement learning task migration decision algorithm based on graph convolutional neural networks to make service migration decisions. Simulation experiment results show that the proposed algorithm outperforms other baseline algorithms in reducing average task latency and energy consumption, and can provide an effective solution for efficient, low consumption, and stable service migration in the environment of Internet of Vehicles.

Key words: mobile edge computing, service migration, graph neural network, Internet of Vehicles

中图分类号: 

  • TP183