J4

• 数学 • 上一篇    下一篇

黎曼流形上非可微多目标规划的必要最优性条件

肖 刚, 刘三阳   

  1. 西安电子科技大学 理学院, 西安 710071
  • 收稿日期:2007-05-24 修回日期:1900-01-01 出版日期:2008-03-26 发布日期:2008-03-26
  • 通讯作者: 肖 刚

Necessary Optimality Conditions of NondifferentiableMultiobjective Programming on Riemannian Manifolds

XIAO Gang, LIU Sanyang   

  1. College of Sciences, Xidian University, Xi’an 710071, China
  • Received:2007-05-24 Revised:1900-01-01 Online:2008-03-26 Published:2008-03-26
  • Contact: XIAO Gang

摘要: 在黎曼流形上建立非光滑函数分析工具的基础上, 把具有等式和不等式约束的非可微多目标数学规划问题扩展到黎曼流形上, 利用Ekeland变分原理, 推导出弱帕雷托最优解广义梯度形式的FritzJohn型必要最优性条件.

关键词: 多目标规划, 必要最优性条件, 广义梯度, 黎曼流形

Abstract: On the basis of the nonsmooth tools established on Riemannian manifolds, the nondifferentiable multiobjective optimization problems with equality and inequality constraints are extended from Euclidean space to Riemannian manifolds. Via Ekeland variational principle, the FritzJohn necessary conditions with generalized gradient formula for weak Pareto optimal solutions are derived.

Key words: multiobjective program, necessary optimality condition, generalized gradient, Riemannian manifold

中图分类号: 

  • O186.12