J4 ›› 2012, Vol. 50 ›› Issue (03): 391-.

• 数学 • 上一篇    下一篇

广义d-Ⅴ-Ⅰ型一致不变凸条件下的不可微多目标规划问题

焦合华1,2, 刘三阳1   

  1. 1. 西安电子科技大学 理学院, 西安 710071|2. 长江师范学院 数学与计算机学院, 重庆 408100
  • 收稿日期:2011-08-12 出版日期:2012-05-26 发布日期:2012-05-28
  • 通讯作者: 焦合华 E-mail:jiaohh361@126.com

Nondifferentiable Multiobjective Programming Problemunder Generalized d-ⅤTypeⅠ Univexity

JIAO Hehua1,2, LIU Sanyang1   

  1. 1. School of Science, Xidian University, Xi’an 710071, China;
    2. College of Mathematics and Computer, Yangtze Normal University, Chongqing 408100, China
  • Received:2011-08-12 Online:2012-05-26 Published:2012-05-28
  • Contact: JIAO Hehua E-mail:jiaohh361@126.com

摘要:

利用d不变凸性, 提出一类新的广义d-Ⅴ-Ⅰ型一致不变凸的概念. 考虑带不等式约束的不可微多目标规划问题, 并在广义d-Ⅴ-Ⅰ型一致不变凸性条件下, 得到了一些最优性充分条件, 同时建立一个Mond-Weir型对偶, 并证明了弱对偶、 逆对偶和严格对偶定理.

关键词: 多目标规划, 广义d不变凸性, Ⅰ型一致不变凸, 最优充分性; 对偶

Abstract:

With the help of dinvexity, a new class of  concept of generalized d-ⅤtypeⅠ univexity was introduced and a nondifferentiable multiobjective programming problem with inequality constraints was considered and some sufficient optimality conditions were derived under the assumptions of generalized d-ⅤtypeⅠ univexity. Furthermore, a MondWeir type dual was formulated and weak duality, converse duality and strict duality theorems were proved.

Key words: multiobjective programming; generalized dinvexity; typeⅠ univexity; sufficient optimality; duality

中图分类号: 

  • O221.6