吉林大学学报(理学版) ›› 2018, Vol. 56 ›› Issue (5): 1147-1155.

• 计算机科学 • 上一篇    下一篇

支持大规模地震探测数据快速可视化的云端数据缓存技术

魏晓辉, 崔浩龙, 李洪亮, 白鑫   

  1. 吉林大学 计算机科学与技术学院, 长春 130012
  • 收稿日期:2017-03-29 出版日期:2018-09-26 发布日期:2018-11-22
  • 通讯作者: 李洪亮 E-mail:lihongliang@jlu.edu.cn

Cloud Data Cache Technology Supporting RapidVisualization of Large-Scale  Seismic Exploration Data#br#

WEI Xiaohui, CUI Haolong, LI Hongliang, BAI Xin   

  1. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2017-03-29 Online:2018-09-26 Published:2018-11-22

摘要: 首先, 基于云计算应用模式, 提出一种能有效利用云存储架构的双层缓存技术. 通过在客户端和服务器端建立分布式缓存, 能有效避免用户频繁访问远端数据, 为用户构建轻量级的客户端, 解决了目前地学数据可视化软件大量占用用户本地存储容量的问题. 同时服务器端也避免了多次访问云存储文件系统, 减少了大量的数据检索与加载时间. 其次, 提出一种ARLS(association rule last successor)访问预测算法, 根据用户的历史访问记录, 利用关联规则挖掘用户的访问模式, 对其访问行为进行预测, 进而提前加载数据, 提高缓存命中率, 解决了用户在可视化过程中不断移动兴趣区域, 频繁更换渲染数据的问题, 能有效应对用户具有多种访问模式的情况, 提高了预测准确率. 实验结果表明, 该云存储架构显著减少了本地资源消耗, 访问预测算法的准确率在最差情形下可达47.59%, 平均准确率达91.3%, 分布式缓存的平均缓存命中率达95.61%, 可有效支持云端大规模地震数据的快速可视化.

关键词: 云存储架构, 双层缓存, 大数据索引, 访问预测, 快速可视化, 网络通信

Abstract: Firstly, based on the  cloud computing application model, we proposed a double\|layer cache technology which could efficiently utilize the cloud storage architecture. By establishing the distributed  cache between the client and the server, it could  effectively avoid users frequent access to remote data and build lightweight clients for users, which solved the problem that current geoscience data visualization software occupied a large number of user’s local storage capacity, and adapt to the rapid development of mobile devices. In the mean time, the server side  also avoided multiple access to the cloud storage file system, reducing a lot of data retrieval and loading time. Secondly, we  proposed an association rule last successor access prediction algorithm, according to user’s historical access records, the association rules were used to mine the user’s access mode, and predict their access behavior. Then the data was loaded in advance, the cache hit rate was improved, we solved  the problem of constantly moving region of interest and changing the rendering data frequently in the process of visualization, our system could effectively deal with the user’s multiple  access patterns case and improve the accuracy of the prediction. 
Experimental results show that the cloud storage architecture  significantly reduces the  local resource consumption. The accuracy rate of the  access prediction algorithm is 47.59% in the worst case, the average accuracy rate is 913%, and the average cache hit rate of distributed cache is  9561%, which can effectively support the rapid visualization of large-scale seismic data in the cloud.

Key words: cloud storage architecture, double-layer cache, large , data index, access prediction, rapid visualization, network communication

中图分类号: 

  • TP391