吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (4): 775-781.

• 数学 • 上一篇    下一篇

 一类非线性分数阶微分方程耦合系统边值问题的两个正解

彭钟琪1, 李媛1, 薛益民2   

  1. 1. 沈阳工业大学 理学院,  沈阳 110870; 2. 徐州工程学院 数学与物理科学学院, 江苏 徐州 221018
  • 收稿日期:2019-11-13 出版日期:2020-07-26 发布日期:2020-07-16
  • 通讯作者: 薛益民 E-mail:xueym@xzit.edu.cn

Two Positive Solutions of Boundary Value Problem for a Class ofCoupled System of Nonlinear Fractional Differential Equations

PENG Zhongqi1, LI Yuan1, XUE Yimin2   

  1. 1. School of Science, Shenyang University of Technology, Shenyang 110870, China; 
    2. School of Mathematics and Physical Science, Xuzhou Institute of Technology, Xuzhou 221018, Jiangsu Province, China
  • Received:2019-11-13 Online:2020-07-26 Published:2020-07-16
  • Contact: XUE Yimin E-mail:xueym@xzit.edu.cn

摘要: 考虑一类非线性Caputo型分数阶微分方程耦合系统的边值问题, 利用Green函数的性质和GuoKrasnosel’skii’s不动点定理证明该耦合系统两个正解的存在性.

关键词: 分数阶微分方程, 耦合系统, 边值问题, 不动点定理

Abstract: We considered the boundary value problem for a class of coupled system of nonlinear Caputo fractional differential equations, and proved the existence of two positive solutions of the coupled system by using properties of Green’s function and the fixed point theorem of GuoKrasnosel’skii’s.

Key words: fractional differential equation, coupled system, boundary value problem, fixed point theorem

中图分类号: 

  •