吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (4): 906-912.

• 计算机科学 • 上一篇    下一篇

基于卷积神经网络的粗粒度数据分布式算法

骆焦煌   

  1. 闽南理工学院 信息管理学院, 福建 泉州 362000
  • 收稿日期:2019-11-27 出版日期:2020-07-26 发布日期:2020-07-16
  • 通讯作者: 骆焦煌 E-mail:1104674880@qq.com

Distributed Algorithm of Coarse Granularity DataBased on Convolutional Neural Network

LUO Jiaohuang   

  1. School of Information Management, Minnan University of Science and Technology, Quanzhou 362000, Fujian Province, China
  • Received:2019-11-27 Online:2020-07-26 Published:2020-07-16
  • Contact: LUO Jiaohuang E-mail:1104674880@qq.com

摘要: 针对特定运行模式下粗粒度数据存在计算效率较低的问题, 提出一种基于卷积神经网络的数据分布式算法. 首先构建用于粗粒度数据处理的卷积神经网络模型, 给出模型基础连接层神经元网络的连接结构和权重比例, 并训练和池化粗粒度数据; 然后利用训练池化结果求解模型的最小损失函数, 提升模型针对粗粒度数据的分布式计算能力. 实验结果表明, 在单机和集群模式下, 卷积神经网络模型具有更好的计算效率和数据泛化能力.

关键词: 卷积神经网络, 粗粒度, 卷积层, 池化层

Abstract: Aiming at the problem of the low efficiency of coarse granularity data in specific operation mode, the author proposed a data distributed algorithm based on convolutional neural network. Firstly, the convolutional neural network model for coarse granularity data processing was constructed. The connection structure and weight proportion of the neural network in the basic connection layer of the model were given, and the coarse granularity data were trained and pooled. Secondly, the result of training
 pooling was used to solve the minimum loss function of the model and improve the distributed computing ability of the model for coarse granularity data. The experimental results show that in the single machine and cluster mode, the convolutional neural network model has better computing efficiency and data generalization ability.

Key words: convolutional neural network, coarse granularity, convolutional layer, pooling layer

中图分类号: 

  • TP311