吉林大学学报(理学版) ›› 2020, Vol. 58 ›› Issue (4): 913-922.

• 计算机科学 • 上一篇    下一篇

基于跨层复制连接卷积神经网络的遥感图像融合

王明丽, 王刚, 郭晓新, 王献昌   

  1. 吉林大学 计算机科学与技术学院, 长春 130012
  • 收稿日期:2019-07-12 出版日期:2020-07-26 发布日期:2020-07-16
  • 通讯作者: 郭晓新 E-mail:guoxx@jlu.edu.cn

Remote Sensing Image Fusion Based on CrossLayerCopy Connection Convolutional Neural Network

WANG Mingli, WANG Gang, GUO Xiaoxin, WANG Xianchang   

  1. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2019-07-12 Online:2020-07-26 Published:2020-07-16
  • Contact: GUO Xiaoxin E-mail:guoxx@jlu.edu.cn

摘要: 首先, 基于卷积神经网络提出一种采用跨层复制连接操作融合不同尺度特征图的遥感图像融合模型, 解决了传统遥感图像融合方法对不同类型遥感图像需人为选择不同的分解融合规则, 导致融合图像质量受选择规则影响较大的问题. 其次, 使用Deimos卫星和QuickBird
卫星数据验证该方法的有效性, 并用主观和客观相结合的方法评价融合图像质量. 实验结果表明, 该遥感图像融合模型与传统方法相比, 能有效将全色图像的空间信息与多光谱图像的光谱信息融合, 并抑制光谱扭曲.

关键词: 卷积神经网络, 机器学习, 计算机应用, 遥感图像融合

Abstract: Firstly, based on the convolutional neural network, we proposed a remote sensing image fusion model that used crosslayer copy connection operations to fuse feature maps of different scales, and solved the problem that traditional remote sensing image fusion methods needed to manually select different decomposition and fusion rules for different types of remote sensing images, w
hich led to the problem that the fusion image quality was greatly affected by selected rules. Secondly, the effectiveness of the method was verified by the Deimos satellite and QuickBird satellite data, and the fusion image quality was evaluated by the subjective and objective methods. Experimental results show that the proposed model can effectively combine the spatial information of panchromatic image with the spectral information of multispectral image, and control the spectral distortion.

Key words: convolutional neural network,  , machine learning, computer application, remote sensing image fusion

中图分类号: 

  •