吉林大学学报(理学版) ›› 2021, Vol. 59 ›› Issue (3): 489-496.

• • 上一篇    下一篇

近Ricci孤立子的刚性

魏佩玺, 刘建成   

  1. 西北师范大学 数学与统计学院, 兰州 730070
  • 收稿日期:2020-07-13 出版日期:2021-05-26 发布日期:2021-05-23
  • 通讯作者: 刘建成 E-mail:liujc@nwnu.edu.cn

Rigidity of Almost Ricci Solitons

WEI Peixi, LIU Jiancheng   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Received:2020-07-13 Online:2021-05-26 Published:2021-05-23

摘要: 通过计算无迹曲率张量模长平方的X-Laplace算子, 讨论近Ricci孤立子的刚性. 在数量曲率非负的假设下, 证明完备近Ricci孤立子在逐点拼挤条件下等距于Rn或Sn的有限商. 对紧致近Ricci孤立子, 在数量曲率为正的假设下, 给出一个积分不等式, 并证明等号成立当且仅当孤立子等距于Sn的有限商.

关键词: 近Ricci孤立子, 刚性, X-Laplace算子

Abstract: We discussed the rigidity of almost Ricci solitons by calculating the X-Laplacian for the module square of the trace-free curvature tensor. Under the assumption that the scalar curvature was nonnegative, we proved that a complete almost Ricci solitons were isometric to a finite quotient of Rn or Sn under a pointwise pinching condition. For a compact almost Ricci soliton, we gave an integral inequality and proved that the equal sign held if and only if the soliton was isometric to a finite quotient of Sn under the assumption that the scalar curvature was positive.

Key words: almost Ricci solitons, rigidity, X-Laplacian

中图分类号: 

  • O186.12