吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (3): 531-539.

• • 上一篇    下一篇

Lévy过程驱使的非线性随机微分方程的参数估计

李明蔚, 吕艳   

  1. 南京理工大学 数学与统计学院, 南京 210094
  • 收稿日期:2022-08-07 出版日期:2023-05-26 发布日期:2023-05-26
  • 通讯作者: 吕艳 E-mail:lvyan1998@aliyun.com

Parameter Estimation of Nonlinear Stochastic Differential Equations Driven by Lévy Processes

LI Mingwei, LV Yan   

  1. School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2022-08-07 Online:2023-05-26 Published:2023-05-26

摘要: 用极大似然估计方法, 考虑一类由Lévy过程驱使的非线性随机微分方程参数估计问题. 首先, 在连续时间观测下讨论当T→∞时, 估计量的无偏性、 渐近一致性及其渐近正态性; 其次, 在高频离散观测且有限活跃条件下, 利用阈值法逼近连续鞅部分, 得到当n→∞时, 估计量的无偏性和渐近正态性; 最后, 通过给出数值模拟结果验证估计量的无偏性和渐近正态性.

关键词: 非线性随机微分方程, 极大似然估计, 局部Lipschitz, 无偏性, 渐近正态性

Abstract: By using the maximum likelihood estimation method, we considered the parameter estimation of a class of nonlinear stochastic differential equations driven by Lévy process. Firstly, the unbiasedness, the asymptotic consistency and the asymptotic normality of the estimator as T→∞ were discussed under time-continuous observations. Secondly, the continuous martingale part was approximated by a threshold method, and the unbiasedness and asymptotic normality of the estimator as n→∞ were obtained under the condition of high-frequency discrete observations and finite activity. Finally, the unbiasedness and asymptotic normality of estimator were verified by numerical simulation results.

Key words: nonlinear stochastic differential equation, maximum likelihood estimation (MLE), local Lipschitz, unbiasedness, asymptotic normality

中图分类号: 

  • O211.63