吉林大学学报(理学版) ›› 2023, Vol. 61 ›› Issue (3): 540-546.

• • 上一篇    下一篇

基于半定规划的多约束图划分问题

王晓瑜1, 刘红卫1, 王婷1, 丁玉婉1, 游海龙2   

  1. 1. 西安电子科技大学 数学与统计学院, 西安 710126; 2. 西安电子科技大学 微电子学院, 西安 710071
  • 收稿日期:2022-06-11 出版日期:2023-05-26 发布日期:2023-05-26
  • 通讯作者: 刘红卫 E-mail:hwliuxidian@163.com

Multi-constraint Graph Partitioning Problem Based on Semidefinite Programming

WANG Xiaoyu1, LIU Hongwei1, WANG Ting1, DING Yuwan1, YOU Hailong2   

  1. 1. School of Mathematics and Statistics, Xidian University, Xi’an 710126, China;
    2. School of Microelectronics, Xidian University, Xi’an 710071, China
  • Received:2022-06-11 Online:2023-05-26 Published:2023-05-26

摘要: 提出一种递归的二分算法, 用于求解带顶点权重约束的图划分问题. 首先利用内点法求解不加顶点权重约束的半定规划松弛模型, 然后利用超平面舍入算法得到满足顶点权重约束的初始可行解, 再进一步设计启发式算法对初始可行划分进行局部改进, 以得到更优的划分结果. 实验结果表明, 所设计的算法可在较短时间内得到多约束图划分问题的高质量解.

关键词: 图划分, 半定规划, 背包问题, 组合优化

Abstract: We proposed a recursive dichotomy algorithm to solve the graph partitioning problem with vertex weight constraint. Firstly, the interior point method was used to solve the semidefinite programming relaxation model without vertex weight constraint. Secondly, the initial feasible solution satisfying the vertex weight constraint was obtained by hyperplane rounding algorithm. Thirdly, the heuristic algorithm was further designed to locally improve the initial feasible partition to obtain the optimal partition result. The experimental results show that the proposed algorithm can obtain the high quality solution to the multi-constraint graph partitioning problem in a short time.

Key words: graph partitioning, semidefinite programming, knapsack problem, combinatorial optimization

中图分类号: 

  • O221.7