吉林大学学报(理学版) ›› 2024, Vol. 62 ›› Issue (2): 331-0338.

• • 上一篇    下一篇

基于自表示和投影映射的不完整多视图聚类

赵翠娜, 杨有龙   

  1. 西安电子科技大学 数学与统计学院, 西安 710126
  • 收稿日期:2023-03-01 出版日期:2024-03-26 发布日期:2024-03-26
  • 通讯作者: 杨有龙 E-mail:ylyang@mail.xidian.edu.cn

Incomplete Multi-view Clustering Based on Self-representation and Projection Mapping

ZHAO Cuina, YANG Youlong   

  1. School of Mathematics and Statistics, Xidian University, Xi’an 710126, China
  • Received:2023-03-01 Online:2024-03-26 Published:2024-03-26

摘要: 针对不完整多视图聚类存在的缺陷, 提出一种融合自表示和投影映射的统一框架. 首先, 利用自表示和样本存在指示矩阵学习一致相似图, 它反映了样本间的公共相似关系; 其次, 利用投影映射将样本矩阵投影到超球面上, 得到公共低维表示; 最后, 将两者通过谱表示嵌入在一起, 解决了因多视图数据缺失引起的不完整多视图聚类问题. 该算法在真实数据集上的实验结果优于其他算法, 证明了算法的有效性.

关键词: 多视图聚类, 不完整视图, 自表示学习, 投影映射

Abstract: Aiming at the shortcomings of incomplete multi-view clustering, we  proposed a unified framework that integrated self-representation and projection mapping. Firstly, self-representation and sample presence indication matrices were used to learn a uniform similarity graph, which reflected the common similarity relationship between samples. Secondly, the sample matrices were projected onto the hypersphere by using projection mapping to obtain a common low-dimensional representation. Finally, the two were embedded together through spectral representation to solve the incomplete multi-view clustering problem caused by missing multi-view data. The experimental results of this algorithm on real datasets are better than other algorithms, which proves the effectiveness of the proposed algorithm.

Key words: multi-view clustering, incomplete view, self-representation learning, projection mapping

中图分类号: 

  • TP391